Developing a comprehensive evaluation model of variety adaptability based on machine learning method
文献类型: 外文期刊
作者: Han, Yanyun 1 ; Wang, Kaiyi 1 ; Zhang, Qi 1 ; Yang, Feng 1 ; Pan, Shouhui 1 ; Liu, Zhongqiang 1 ; Zhang, Qiusi 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
关键词: Maize variety adaptability evaluation; Variety adaptability comprehensive evaluation index; Entropy weight method; Machine learning method
期刊名称:FIELD CROPS RESEARCH ( 影响因子:5.8; 五年影响因子:6.9 )
ISSN: 0378-4290
年卷期: 2024 年 306 卷
页码:
收录情况: SCI
摘要: Context or problem: A comprehensive evaluation of the adaptability of maize varieties is very important to accurately promote new varieties and reduce the risk of using them. However, challenges are faced when accurately promoting new varieties owing to the lack of a comprehensive model to evaluate the adaptability of a variety for a specific area, such as a district or county.Objective or research question: The purpose of this study was to construct a new maize (Zea mays) Variety Adaptability Comprehensive Evaluation Index (VACEI) by combining nine agronomic traits; including the lodging rate, stalk rot (Fusarium graminearum) resistance, ear rot (Fusarium graminearum) resistance, Curvularia leaf spot (Curvularia lunata) resistance, southern leaf blight (Bipolaris maydis) resistance, common smut (Ustilago maydis) resistance, southern corn rust (Puccinia polysora) resistance, growth period, and yield; that utilized a machine learning method to construct a prediction model for the VACE and estimate the adaptability of maize varieties on a district or county scale.Methods: The entropy weight method was used to calculate a new maize VACEI by combining nine agronomic traits. A VACEI prediction model that utilized machine learning algorithms was proposed for the application of a variety and its promotion for a locality, such as a district or county. The variety breeding value, seven meteorological factors, such as the effective accumulated temperature, amount of precipitation, duration of total sunshine, daily maximum temperature, daily minimum temperature, daily maximum wind speed, and daily relative humidity; and five soil features, including the soil pH, soil organic matter, soil total nitrogen content, soil available phosphorus, and soil available potassium; were selected as the input parameters of the model. VACEI was set as the output parameter of the model. Gaussian process regression, support vector regression, random forest, and artificial neural network algorithms were used to construct the model.Results: The random forest model outperformed the other algorithms in predicting the VACEI of maize varieties by achieving a maximum coefficient of determination of 0.95 and minimal root mean square error of 6.6316, mean absolute error of 4.6787, and mean square error of 43.978.Conclusions: The constructed model can be used to effectively predict the VACEI of specific varieties to support good varieties in the specific area, such as the selection of a district or county. It can help farmers to objectively select varieties suitable for the local environment and support the precise promotion and planting of cultivars.
- 相关文献
作者其他论文 更多>>
-
TrG2P: A transfer-learning-based tool integrating multi-trait data for accurate prediction of crop yield
作者:Li, Jinlong;Zhang, Dongfeng;Yang, Feng;Zhang, Qiusi;Pan, Shouhui;Zhao, Xiangyu;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Zhao, Chunjiang;Li, Jinlong;Zhang, Dongfeng;Yang, Feng;Zhang, Qiusi;Pan, Shouhui;Zhao, Xiangyu;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Zhao, Chunjiang;Yang, Jinliang;Yang, Jinliang
关键词:crop; genotype to phenotype; transfer learning; yield prediction; multi-trait
-
Prediction of maize cultivar yield based on machine learning algorithms for precise promotion and planting
作者:Han, Yanyun;Wang, Kaiyi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi;Zhang, Qi;Han, Yanyun;Wang, Kaiyi;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Zhang, Qiusi;Zhang, Qi
关键词:Prediction of maize cultivar yield; Machine learning; Random forest; Levenberg - Marquardt neural network; Multilayer perceptron neural network; Assessment of varieties
-
Advances in understanding grapevine downy mildew: From pathogen infection to disease management
作者:Peng, Junbo;Wang, Xuncheng;Wang, Hui;Li, Xinghong;Zhang, Qi;Wang, Meng;Yan, Jiye
关键词:effector biology; grapevine; Plasmopara viticola; sustainable control
-
Prediction of corn variety yield with attribute-missing data via graph neural network
作者:Yang, Feng;Zhang, Dongfeng;Han, Yanyun;Zhang, Qiusi;Zhang, Qi;Liu, Zhongqiang;Wang, Kaiyi;Zhang, Yuqing;Zhang, Yong;Han, Yanyun;Liu, Zhongqiang;Wang, Kaiyi;Zhang, Qiusi;Zhang, Qi;Zhang, Chenghui
关键词:Corn variety yield prediction; Graph neural network; Data imputation; Adversarial learning
-
A variety test platform for the standardization and data quality improvement of crop variety tests
作者:Yang, Feng;Liu, Zhongqiang;Wang, Xiaofeng;Zhang, Qiusi;Han, Yanyun;Zhao, Xiangyu;Pan, Shouhui;Wang, Shufeng;Zhang, Qi;Wang, Kaiyi;Wang, Yuxi;Qiu, Jun;Wang, Xiaofeng;Zhang, Qiusi;Han, Yanyun;Wang, Shufeng;Zhang, Qi;Zhao, Xiangyu;Pan, Shouhui;Wang, Kaiyi;Yang, Shuo
关键词:crop variety test; trait data; standardization; data quality control; statistical analysis
-
Maize yield prediction using federated random forest
作者:Zhang, Qiusi;Wang, Kaiyi;Zhao, Chunjiang;Zhang, Qiusi;Zhao, Xiangyu;Han, Yanyun;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Wang, Kaiyi;Zhao, Chunjiang;Zhang, Qiusi;Zhao, Xiangyu;Han, Yanyun;Yang, Feng;Pan, Shouhui;Liu, Zhongqiang;Wang, Kaiyi;Zhao, Chunjiang
关键词:Yield prediction; Joint breeding; Federated learning; Intelligent agriculture
-
Precise Recommendation Method of Suitable Planting Areas of Maize Varieties Based on Knowledge Graph
作者:Zou, Yidong;Zhao, Chunjiang;Zou, Yidong;Pan, Shouhui;Yang, Feng;Zhang, Dongfeng;Han, Yanyun;Zhao, Xiangyu;Wang, Kaiyi;Zhao, Chunjiang;Zou, Yidong;Pan, Shouhui;Yang, Feng;Zhang, Dongfeng;Han, Yanyun;Zhao, Xiangyu;Wang, Kaiyi;Zhao, Chunjiang
关键词:maize varieties; knowledge graph; recommendation model; RippleNet; county-scale