Leaf nitrogen spectral reflectance model of winter wheat (Triticum aestivum) based on PROSPECT: simulation and inversion
文献类型: 外文期刊
作者: Yang, Guijun 1 ; Zhao, Chunjiang 1 ; Pu, Ruiliang 3 ; Feng, Haikuan 2 ; Li, Zhenhai 2 ; Li, Heli 2 ; Sun, Chenhong 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Shuguang Hua Yuan Middle Rd 11, Beijing, Peoples R China
2.Natl Engn Res Ctr Informat Technol Agr, Beijing, Peoples R China
3.Univ S Florida, Sch Geosci, Tampa, FL 33620 USA
关键词: leaf reflectance;chlorophyll;leaf nitrogen density;N-PROSPECT;partial least squares regression
期刊名称:JOURNAL OF APPLIED REMOTE SENSING ( 影响因子:1.53; 五年影响因子:1.565 )
ISSN: 1931-3195
年卷期: 2015 年 9 卷
页码:
收录情况: SCI
摘要: Through its association with proteins and plant pigments, leaf nitrogen (N) plays an important regulatory role in photosynthesis, leaf respiration, and net primary production. However, the traditional methods of measurement leaf N are rooted in sample-based spectroscopy in laboratory. There is a big challenge of deriving leaf N from the nondestructive field measured leaf spectra. In this study, the original PROSPECT model was extended by replacing the absorption coefficient of chlorophyll in the original PROSPECT model with an equivalent N absorption coefficient to develop a nitrogen-based PROSPECT model (N-PROSPECT). N PROSPECT was evaluated by comparing the model-simulated reflectance values with the measured leaf reflectance values. The validated results show that the correlation coefficient (R) was 0.98 for the wavelengths of 400 to 2500 nm. Finally, N-PROSPECT was used to simulate leaf reflectance using different combinations of input parameters, and partial least squares regression (PLSR) was used to establish the relationship between the N-PROSPECT simulated reflectance and the corresponding leaf nitrogen density (LND). The inverse of the PLSR-based N-PROSPECT model was used to retrieve LND from the measured reflectance with a relatively high accuracy (R-2 = 0.77, RMSE = 22.15 mu g cm(-2)). This result demonstrates that the N-PROSPECT model established in this study can accurately simulate nitrogen spectral contributions and retrieve LND. The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
- 相关文献
作者其他论文 更多>>
-
UssNet: a spatial self-awareness algorithm for wheat lodging area detection
作者:Zhang, Jun;Wu, Qiang;Duan, Fenghui;Liu, Cuiping;Xiong, Shuping;Ma, Xinming;Cheng, Jinpeng;Feng, Mingzheng;Dai, Li;Wang, Xiaochun;Yang, Hao;Yang, Guijun;Chang, Shenglong
关键词:Unmanned aerial vehicle; State space models; Wheat lodging area identification; Semantic segmentation
-
Recognition of maize seedling under weed disturbance using improved YOLOv5 algorithm
作者:Tang, Boyi;Zhao, Chunjiang;Tang, Boyi;Zhou, Jingping;Pan, Yuchun;Qu, Xuzhou;Cui, Yanglin;Liu, Chang;Li, Xuguang;Zhao, Chunjiang;Gu, Xiaohe;Li, Xuguang
关键词:Object detection; Maize seedlings; UAV RGB images; YOLOv5; Attention mechanism
-
Boosting Cost-Efficiency in Robotics: A Distributed Computing Approach for Harvesting Robots
作者:Xie, Feng;Xie, Feng;Li, Tao;Feng, Qingchun;Li, Tao;Feng, Qingchun;Chen, Liping;Zhao, Chunjiang;Zhao, Hui
关键词:5G network; computation allocation; edge computing; harvesting robot; visual system
-
A Comprehensive Evaluation of Monocular Depth Estimation Methods in Low-Altitude Forest Environment
作者:Jia, Jiwen;Kang, Junhua;Gao, Xiang;Zhang, Borui;Yang, Guijun;Chen, Lin;Yang, Guijun
关键词:monocular depth estimation; CNN; vision transformer; forest environment; comparative study
-
Genotyping Identification of Maize Based on Three-Dimensional Structural Phenotyping and Gaussian Fuzzy Clustering
作者:Xu, Bo;Zhao, Chunjiang;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao;Xu, Bo;Zhao, Chunjiang;Yang, Guijun;Zhang, Yuan;Liu, Changbin;Feng, Haikuan;Yang, Xiaodong;Yang, Hao
关键词:tassel; 3D phenotyping; TreeQSM; genotyping; clustering
-
Sensitivity Analysis of AquaCrop Model Parameters for Winter Wheat under Different Meteorological Conditions Based on the EFAST Method
作者:Xing, Huimin;Sun, Qi;Li, Zhiguo;Wang, Zhen;Xing, Huimin;Wang, Zhen;Xing, Huimin;Sun, Qi;Wang, Zhen;Li, Zhiguo;Feng, Haikuan
关键词:winter wheat; biomass; sensitivity analysis; AquaCrop model
-
High-throughput phenotyping techniques for forage: Status, bottleneck, and challenges
作者:Cheng, Tao;Zhang, Dongyan;Cheng, Tao;Wang, Zhaoming;Zhang, Dongyan;Zhang, Gan;Yuan, Feng;Liu, Yaling;Wang, Tianyi;Ren, Weibo;Zhao, Chunjiang
关键词:Forage; High-throughput phenotyping; Precision identification; Sensors; Artificial intelligence; Efficient breeding



