您好,欢迎访问北京市农林科学院 机构知识库!

Comparative Research on Estimating the Severity of Yellow Rust in Winter Wheat

文献类型: 外文期刊

作者: Wang Jing 1 ; Jing Yuan-shu 1 ; Huang Wen-jiang 2 ; Zhang Jing-cheng 3 ; Zhao Juan 1 ; Zhang Qing 2 ; Wang Li 2 ;

作者机构: 1.Nanjing Univ Informat Sci & Technol, Sch Appl Meteorol, Nanjing 210044, Jiangsu, Peoples R China

2.Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China

3.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

关键词: Hyper-spectral;Yellow rust;Partial Least Square;BP neural network;Disease index

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2015 年 35 卷 6 期

页码:

收录情况: SCI

摘要: In order to improve the accuracy of wheat yellow rust disease severity using remote sensing and to find the optimum inversion model of wheat diseases, the canopy reflectance and disease index (DI) of winter wheat under different severity stripe rust were acquired. The three models of PLS (Partial Least Square), BP neural network using seven hyperspectral vegetation indices which have significant relationship with the occurrence of disease and vegetation index (PRI) were adopted to build a feasible regression model for detecting the disease severity. The results showed that PLS performed much better. The inversion accuracy of PLS method is best than of the VI (PRI, Photochemical Reflectance Index) and BP neural network models. The coefficients of determination (R-2) of three methods to estimate disease severity between predicted and measured values are 0.936, 0.918 and 0.767 respectively. Evaluation was made between the estimated DI and the measured DI, indicating that the model based on PLS is suitable for monitoring wheat disease. In addition, to explore the different contributions of diverse types of vegetation index to the models, the paper attempts to use NDVI, GNDVI and MSR which on behalf of vegetation greenness and ND-WI and MSI that represents the moisture content to be input variables of PLS model. The results showed that, for the wheat yellow rust disease, changes in chlorophyll content is more sensitive to the disease severity than the changes in water content of the canopy. However, the accuracy of the two models are both lower than predicted when participating in all seven vegetation indices, namely using several species of vegetation indices tends to be more accurate than that using single category. It indicated that it has great potential for evaluating wheat disease severity by using hyper-spectral remote sensing.

  • 相关文献

[1]BP Neural Network Based Localization for a Front-Wheel Drive and Differential Steering Mobile Robot. Jia, Shiwei,Qiu, Quan,Li, You,Cong, Yue,Jia, Shiwei,Qiu, Quan,Li, You,Cong, Yue,Jia, Shiwei,Li, Junmin. 2015

[2]Agricultural Information Service Quality Evaluation Algorithm Based on Genetic Algorithm, BP Neural Network and Multiple Regressions. Chen, Cheng,Wu, Huarui. 2013

[3]Study of short-term water quality prediction model based on wavelet neural network. Xu, Longqin,Liu, Shuangyin,Liu, Shuangyin,Liu, Shuangyin.

[4]Quantitative Analysis of the Content of Deltamethrin in Agrochemicals by Near-Infrared, Attenuated Total Reflectance Infrared and Raman Spectroscopy. Xiong Yan-mei,Tang Guo,Duan Jia,Li Chun-zi,Min Shun-geng,Wang Dong. 2010

[5]Research on the Quantitative Determination of Lime in Wheat Flour by Near-Infrared Spectroscopy. Wang Dong,Ma Zhi-hong,Pan Li-gang,Han Ping,Zhao Liu,Wang Ji-hua,Wang Dong,Wang Ji-hua,Wang Dong. 2013

[6]Study on the Near Infrared Model Development of Mixed Liquid Samples by the Algorithm of OSC-PLS. Wang, Dong,Ye, Shengfeng,Min, Shungeng,Wang, Dong,Ma, Zhihong. 2011

[7]Application of Long-Wave Near Infrared Hyperspectral Imaging for Measurement of Soluble Solid Content (SSC) in Pear. Li, Jiangbo,Tian, Xi,Huang, Wenqian,Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Tian, Xi,Huang, Wenqian,Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Huang, Wenqian,Li, Jiangbo,Huang, Wenqian.

[8]Research on the Quantitative Determination of Lime in Wheat Flour by Short-Wavelength Near-Infrared Spectroscopy. Wang, Dong,Wang, Jihua,Wang, Dong,Ma, Zhihong,Pan, Ligang,Han, Ping,Zhao, Liu,Wang, Jihua,Wang, Dong,Han, Donghai.

[9]Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat. Yuan, Lin,Zhang, Jing-Cheng,Wang, Ke,Wang, Ji-Hua,Yuan, Lin,Zhang, Jing-Cheng,Wang, Ji-Hua,Zhao, Jin-Ling,Loraamm, Rebecca-W.,Huang, Wen-Jiang.

[10]Vertical features of yellow rust infestation on winter wheat using hyperspectral imaging measurements. Zhao, Jinling,Zhang, Dongyan,Huang, Linsheng,Zhang, Qing,Liu, Wenjing,Yang, Hao. 2016

[11]CONTINUOUS WAVELET ANALYSIS BASED SPECTRAL FEATURE SELECTION FOR WINTER WHEAT YELLOW RUST DETECTION. Zhang Jingcheng,Wang Jihua,Zhang Jingcheng,Luo Juhua,Huang Wenjiang,Wang Jihua,Luo Juhua. 2011

[12]Comparison between wavelet spectral features and conventional spectral features in detecting yellow rust for winter wheat. Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Yang, Guijun,Wang, Jihua,Zhang, Jingcheng,Pu, Ruiliang,Loraamm, Rebecca W.. 2014

[13]Differentiation of Yellow Rust and Powdery Mildew in Winter Wheat and Retrieving of Disease Severity Based on Leaf Level Spectral Analysis. Yuan Lin,Zhang Jing-cheng,Zhao Jin-ling,Wang Ji-hua,Yuan Lin,Zhang Jing-cheng,Wang Ji-hua,Huang Wen-jiang. 2013

[14]SELECTION OF SPECTRAL CHANNELS FOR SATELLITE SENSORS IN MONITORING YELLOW RUST DISEASE OF WINTER WHEAT. Yuan, Lin,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua. 2013

[15]Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Zhang, Jingcheng,Huang, Wenjiang,Yuan, Lin,Luo, Juhua,Wang, Jihua,Zhang, Jingcheng,Pu, Ruiliang,Zhang, Jingcheng,Yuan, Lin,Wang, Jihua,Huang, Wenjiang. 2012

[16]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[17]New Optimized Spectral Indices for Identifying and Monitoring Winter Wheat Diseases. Huang, Wenjiang,Guan, Qingsong,Guan, Qingsong,Zhao, Jinling,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Luo, Juhua,Zhang, Jingcheng. 2014

[18]Comparison of Methods for Forecasting Yellow Rust in Winter Wheat at Regional Scale. Nie, Chenwei,Yuan, Lin,Yang, Xiaodong,Wei, Liguang,Yang, Guijun,Zhang, Jingcheng. 2015

[19]Spectral analysis of winter wheat leaves for detection and differentiation of diseases and insects. Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Yuan, Lin,Nie, Chenwei,Wang, Jihua,Zhang, Jingcheng,Huang, Yanbo,Loraamm, Rebecca W.. 2014

作者其他论文 更多>>