您好,欢迎访问北京市农林科学院 机构知识库!

Estimating Winter Wheat Nitrogen Vertical Distribution Based on Bidirectional Canopy Reflected Spectrum

文献类型: 外文期刊

作者: Yang Shao-yuan 1 ; Huang Wen-jiang 1 ; Liang Dong 2 ; Huang Lin-sheng 2 ; Yang Gui-jun 4 ; Zhang Dong-yan 2 ; Cai Shu- 1 ;

作者机构: 1.Chinese Acad Sci, Key Lab Digital Earth Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China

2.Anhui Univ, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Peoples R China

3.Anhui Univ, Sch Elect & Informat Engn, Hefei 230039, Peoples R China

4.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

5.Hebei Agr Tech Extens Stn, Shijiazhuang 050000, Peoples R C

关键词: Winter wheat;Nitrogen density;Canopy reflected spectrum;Bidirectional reflectance;Vertical distribution;Partial least-square (PLS)

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2015 年 35 卷 7 期

页码:

收录情况: SCI

摘要: The vertical distribution of crop nitrogen is increased with plant height, timely and non-damaging measurement of crop nitrogen vertical distribution is critical for the crop production and quality, improving fertilizer utilization and reducing environmental impact. The objective of this study was to discuss the method of estimating winter wheat nitrogen vertical distribution by exploring bidirectional reflectance distribution function (BRDF) data using partial least square (PLS) algorithm. The canopy reflectance at nadir, +/- 50 degrees and +/- 60 degrees; at nadir, +/- 30 degrees and +/- 40 degrees; and at nadir, +/- 20 degrees and +/- 30 degrees were selected to estimate foliage nitrogen density (FND) at upper layer, middle layer and bottom layer, respectively. Three PLS analysis models with FND as the dependent variable and vegetation indices at corresponding angles as the explicative variables were established. The impact of soil reflectance and the canopy non-photosynthetic materials was minimized by seven kinds of modifying vegetation indices with the ratio R-700/R-670. The estimated accuracy is significant raised at upper layer, middle layer and bottom layer in modeling experiment. Independent model verification selected the best three vegetation indices for further research. The research result showed that the modified Green normalized difference vegetation index (GNDVI) shows better performance than other vegetation indices at each layer, which means modified GNDVI could be used in estimating winter wheat nitrogen vertical distribution

  • 相关文献

[1]Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat. Huang, Wenjiang,Wang, Zhijie,Ma, Zhihong,Zhang, Jincheng,Wang, Jihua,Zhao, Chunjiang,Huang, Wenjiang,Huang, Wenjiang,Lamb, David W.,Wang, Zhijie,Huang, Linsheng.

[2]Simulation of Winter Wheat Phenology in Beijing Area with DSSAT-CERES Model. Haikuan Feng,Zhenhai Li,Peng He,Xiuliang Jin,Guijun Yang,Haiyang Yu,Fuqin Yang. 2016

[3]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[4]Retrieval of LAI and leaf chlorophyll content from remote sensing data by agronomy mechanism knowledge to solve the ill-posed inverse problem. Zhenhai Li,Chenwei Nie,Guijun Yang,Xingang Xu,Xiuliang Jin,Xiaohe Gu. 2014

[5]Monitoring the ratio of leaf carbon to nitrogen in winter wheat with hyperspectral measurements. Xin-gang Xu,Xiao-dong Yang,Xiao-he Gu,Hao Yang,Hai-kuan Feng,Gui-jun Yang,Xiao-yu,Song. 2015

[6]Study the Spatial-Temporal Variation of Wheat Growth Under Different Site-Specific Nitrogen Fertilization Approaches. Bei Cui,Wenjiang Huang,Xiaoyu Song,Huichun Ye,Yingying Dong. 2019

[7]EVALUATION OF ARABLE LAND YIELD POTENTIAL THROUGH REMOTE SENSING MONITORING. Song Xiaoyu,Gu Xiaohe,Wang Jihua,Chang Hong. 2014

[8]SPATIAL VARIABILITY OF WINTER WHEAT GROWTH BASED ON THE INDIVIDUAL INDEX AND THE POPULATION INDEX. Bei Cui,Xiaoyu Song,Wude Yang,Meichen Feng,Jihua Wang. 2014

[9]Estimating Winter Wheat Leaf Area Index From Ground and Hyperspectral Observations Using Vegetation Indices. Xie, Qiaoyun,Huang, Wenjiang,Zhang, Bing,Dong, Yingying,Xie, Qiaoyun,Chen, Pengfei,Song, Xiaoyu,Pascucci, Simone,Pignatti, Stefano,Laneve, Giovanni. 2016

[10]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[11]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[12]Discrimination of yellow rust and powdery mildew in wheat at leaf level using spectral signatures. Yuan, Lin,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou,Huang, Wenjiang,Wang, Jihua. 2012

[13]SELECTION OF SPECTRAL CHANNELS FOR SATELLITE SENSORS IN MONITORING YELLOW RUST DISEASE OF WINTER WHEAT. Yuan, Lin,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Yang, Guijun,Wang, Jihua. 2013

[14]Damage Mapping of Powdery Mildew in Winter Wheat with High-Resolution Satellite Image. Yuan, Lin,Zhang, Jingcheng,Nie, Chenwei,Wei, Liguang,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Zhang, Jingcheng,Wang, Jihua,Yuan, Lin,Zhang, Jingcheng,Wang, Jihua,Shi, Yeyin. 2014

[15]Monitoring and Forecasting Winter Wheat Freeze Injury and Yield from Multi-Temporal Remotely Sensed Data. Wang, Huifang,Huo, Zhiguo,Zhou, Guangsheng,Wu, Li,Wang, Huifang,Feng, Haikuan. 2016

[16]Hyperspectral Estimation of Leaf Water Content for Winter Wheat Based on Grey Relational Analysis(GRA). Jin Xiu-liang,Wang Yan,Tan Chang-wei,Zhu Xin-kai,Guo Wen-shan,Xu Xin-gang,Wang Ji-hua,Li Xin-chuan. 2012

[17]Using new hyperspectral index to estimate leaf chlorophyll content in winter wheat. Xu, Xingang,Song, Xiaoyu,Li, Cunjun,Wang, Jihua. 2012

[18]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

[19]Winter wheat field transformation monitoring through remote sensing in Beijing suburb. Song, Xiaoyu,Cui, Fangning,Gu, Xiaohe,Xu, Xingang,Cui, Fangning,Wang Jihua. 2014

[20]EVALUATION OF ARABLE LAND YIELD POTENTIAL THROUGH REMOTE SENSING MONITORING. Song Xiaoyu,Gu Xiaohe,Chang Hong. 2014

作者其他论文 更多>>