您好,欢迎访问北京市农林科学院 机构知识库!

New Vegetation Index Fusing Visible-Infrared and Shortwave Infrared Spectral Feature for Winter Wheat LAI Retrieval

文献类型: 外文期刊

作者: Li Xin-chuan 1 ; Bao Yan-song 4 ; Xu Xin-gang 1 ; Jin Xiu-liang 1 ; Zhang Jing-cheng 1 ; Song Xiao-yu 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

3.Nanjing Univ Informat Sci & Technol, Sch Atmosphere Phys, Nanjing 210044, Jiangsu, Peoples R China

4.Nanjing Univ Informat Sci & Technol, Sc

关键词: Leaf area index(LAI);Hyperspectral remote sensing;Vegetation indices;Shortwave infrared (SWIR);sLAIDI*

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2013 年 33 卷 9 期

页码:

收录情况: SCI

摘要: Considering the great relationships between shortwave infrared (SWIR) and leaf area index (LAD, innovative indices based on water vegetation indices and visible-infrared vegetation indices were presented. In the present work, PROSAIL model was used to study the saturation sensitivity of new vegetation indices to LAI. The estimate models about LAI of winter wheat were built on the basis of the experiment data in 2009 acting as train sample and their precisions were evaluated and tested on the basis of the experiment data in 2008. Ten visible-infrared vegetation indices and five water vegetation indices were used to construct new indices. The result showed that newly developed indices have significant relationships with LAI by numerical simulations and in-situ measurements. In particular, by implementing modified standardized LAI Determining Index(sLAIDI*), all new indices were neither sensitive to water variations nor affected by saturation at high LAI levels. The evaluation models could improve prediction accuracy and have well reliability for LAI retrieval. The result indicated that visible-infrared vegetation indices combined with water index have greater advantage for LAI estimation.

  • 相关文献

[1]融合可见光-近红外与短波红外特征的新型植被指数估算冬小麦LAI. 李鑫川,鲍艳松,徐新刚,金秀良,张竞成,宋晓宇. 2013

[2]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[3]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Jinling Zhao,Dongyan Zhang,Juhua Luo,Dacheng Wang,Wenjiang Huang. 2012

[4]MONITORING WINTER WHEAT MATURITY BY HYPERSPECTRAL VEGETATION INDICES. Wang, Qian,Huang, Yuanfang,Wang, Qian,Li, Cunjun,Wang, Jihua,Song, Xiaoyu,Huang, Wenjiang. 2012

[5]Estimation of nitrogen status in middle and bottom layers of winter wheat canopy by using ground-measured canopy reflectance. Wang, ZJ,Wang, JH,Liu, LY,Huang, WJ,Zhao, CJ,Lu, YL. 2005

[6]Variations in crop variables within wheat canopies and responses of canopy spectral characteristics and derived vegetation indices to different vertical leaf layers and spikes. Li, Hell,Zhao, Chunjiang,Yang, Guijun,Feng, Haikuan.

[7]Hyperspectral Discrimination and Response Characteristics of Stressed Rice Leaves Caused by Rice Leaf Folder. Liu, Zhanyu,Ding, Xiaodong,Zhou, Bin,Liu, Zhanyu,Cheng, Jia-an,Huang, Wenjiang,Li, Cunjun,Xu, Xingang,Shi, Jingjing. 2012

[8]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

[9]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Zhao, Jinling,Zhang, Dongyan,Luo, Juhua,Wang, Dacheng,Huang, Wenjiang. 2012

[10]Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data. Kong, Weiping,Huang, Wenjiang,Zhou, Xianfeng,Kong, Weiping,Zhou, Xianfeng,Song, Xiaoyu,Casa, Raffaele. 2016

[11]Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley. Xu Xin-Gang,Zhao Chun-Jiang,Wang Ji-Hua,Li Cun-Jun,Yang Xiao-Dong. 2013

[12]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[13]A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements. Zhao, Feng,Guo, Yiqing,Verhoef, Wout,Gu, Xingfa,Liu, Liangyun,Yang, Guijun. 2014

[14]Band Depth Analysis and Partial Least Square Regression Based Winter Wheat Biomass Estimation Using Hyperspectral Measurements. Fu Yuan-yuan,Wang Ji-hua,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan,Fu Yuan-yuan,Wang Ji-hua,Yang Gui-jun,Song Xiao-yu,Xu Xin-gang,Feng Hai-kuan. 2013

[15]The Study of Winter Wheat Biomass Estimation Model Based on Hyperspectral Remote Sensing. Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Meng, Lumin. 2016

[16]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Zhao, Jinling,Yuan, Lin,Zhang, Dongyan,Zhang, Jingcheng,Gu, Xiaohe,Huang, Linsheng,Zhang, Dongyan. 2013

[17]Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Luo, Juhua,Huang, Wenjiang,Yuan, Lin,Zhao, Chunjiang,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou.

[18]Comparison of Four Chemometric Techniques for Estimating Leaf Nitrogen Concentrations in Winter Wheat (Triticum Aestivum) Based on Hyperspectral Features. Li, Zh.,Wei, Ch.,Wang, J.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Li, Zh.,Nie, Ch.,Xu, X.,Song, X.,Wang, J..

[19]Evaluating the potential of vegetation indices for winter wheat LAI estimation under different fertilization and water conditions. Xie, Qiaoyun,Huang, Wenjiang,Xie, Qiaoyun,Dash, Jadunandan,Song, Xiaoyu,Wang, Renhong,Huang, Linsheng,Zhao, Jinling.

作者其他论文 更多>>