您好,欢迎访问北京市农林科学院 机构知识库!

MOBILE SMART DEVICE-BASED VEGETABLE DISEASE AND INSECT PEST RECOGNITION METHOD

文献类型: 外文期刊

作者: Wang, Kaiyi 1 ; Zhang, Shuifa 1 ; Wang, Zhibin 1 ; Liu, Zhongqiang 1 ; Yang, Feng 1 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

2.Natl Engn Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

关键词: Computer Vision;Image Processing;Vegetable Diseases

期刊名称:INTELLIGENT AUTOMATION AND SOFT COMPUTING ( 影响因子:1.647; 五年影响因子:1.469 )

ISSN: 1079-8587

年卷期: 2013 年 19 卷 3 期

页码:

收录情况: SCI

摘要: Computer vision and image processing technology have been rapidly developed and widely applied in many fields. There are many potential applications in modern agriculture. In this paper, a novel vegetable disease and insect pest recognition method is proposed based on the current computer vision and image processing methods. To investigate the vegetable disease and insect pest state, it is convenient to use images captured using smart phones for judgment. To implement this application, the disease area and the insect number on the leaves should be detected and figured out. So a new extraction and classification algorithm is firstly introduced to recognize leaves from images. Then a region-labeling algorithm is applied to calculate the insect number and disease areas in the segmented images. To deal with the areas of adhesion, a mathematical morphology algorithm is used for separating the objects. The proposed method is implemented on mobile smart devices and tested with field experiments. The experimental results show that the proposed method has good recognition performance with high efficiency.

  • 相关文献

[1]Design and Implementation of an Automatic Grading System of Diced Potatoes Based on Machine Vision. Wang, Chaopeng,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping,Wang, Chaopeng,Huang, Wenqian,Zhang, Baohua,Yang, Jingjing,Qian, Man,Fan, Shuxiang,Chen, Liping. 2016

[2]Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. Zhang, Baohua,Gong, Liang,Zhao, Chunjiang,Liu, Chengliang,Huang, Danfeng,Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang.

[3]The intelligent diagnostic system of vegetable diseases based on a fuzzy neural network. Wei, Qingfeng,Luo, Changshou,Cao, Chengzhong,Guo, Qiang. 2013

[4]Design and Experiment of a Sorting System for Haploid Maize Kernel. Song, Peng,Wang, Cheng,Luo, Bin,Zhang, Han,Zhang, Jun Xiong. 2018

[5]Research on tomato seed vigor based on X-ray digital image. Zhao Xueguan,Gao Yuanyuan,Wang Xiu,Li Cuiling,Wang, Songlin,Feng Qingcun,Zhao Xueguan,Gao Yuanyuan,Wang Xiu,Li Cuiling,Wang, Songlin,Feng Qingcun,Zhao Xueguan,Gao Yuanyuan,Wang Xiu,Li Cuiling,Wang, Songlin,Feng Qingcun. 2016

[6]Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Zhang, Baohua,Huang, Wenqian,Li, Jiangbo,Zhao, Chunjiang,Fan, Shuxiang,Wu, Jitao,Zhang, Baohua,Zhao, Chunjiang,Liu, Chengliang. 2014

[7]Computer vision recognition of stem and calyx in apples using near-infrared linear-array structured light and 3D reconstruction. Zhang, Baohua,Gong, Liang,Zhao, Chunjiang,Liu, Chengliang,Huang, Danfeng,Huang, Wenqian,Wang, Chaopeng,Zhao, Chunjiang,Huang, Wenqian,Wang, Chaopeng,Zhao, Chunjiang,Huang, Wenqian,Wang, Chaopeng,Zhao, Chunjiang,Huang, Wenqian,Wang, Chaopeng,Zhao, Chunjiang.

[8]Survey of Support Vector Machine in the Processing of Remote Sensing Image. Li, Su,Wang, Wenchao. 2013

[9]Quick image processing method of HJ satellites applied in agriculture monitoring. Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong,Yu Haiyang,Liu Yanmei,Yang Guijun,Yang Xiaodong. 2016

[10]Detection of defects on apple using B-spline lighting correction method. Li, Jiangbo,Huang, Wenqian,Guo, Zhiming. 2013

[11]Image processing methods to evaluate tomato and zucchini damage in post-harvest stages. Antonio Alvarez-Bermejo, Jose,Giagnocavo, Cynthia,Ming, Li,Yang Xinting,Castillo Morales, Encarnacion,Morales Santos, Diego P.. 2017

[12]THE INFRARED THERMAL IMAGE-BASED MONITORING PROCESS OF PEACH DECAY UNDER UNCONTROLLED TEMPERATURE CONDITIONS. Jiao, L. Z.,Wu, W. B.,Zheng, W. G.,Dong, D. M.. 2015

[13]Detection of early bruises on peaches (Amygdalus persica L.) using hyperspectral imaging coupled with improved watershed segmentation algorithm. Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian,Li, Jiangbo,Chen, Liping,Huang, Wenqian. 2018

[14]Fast detection and visualization of early decay in citrus using Vis-NIR hyperspectral imaging. Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Tian, Xi,Wang, Chaopeng,Fan, Shuxiang,Zhao, Chunjiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang.

[15]Detection of Early Rottenness on Apples by Using Hyperspectral Imaging Combined with Spectral Analysis and Image Processing. Zhang, Baohua,Fan, Shuxiang,Li, Jiangbo,Huang, Wenqian,Zhao, Chunjiang,Qian, Man,Zheng, Ling,Zhang, Baohua,Zhao, Chunjiang.

[16]Real-time Monitoring of Exhaust Fan Operation Status in a Livestock House Using Image Analysis. Luyu Ding,Yang Lv,Qifeng Li,Ligen Yu,Ronghua Gao,Weihong Ma,Qinyang Yu. 2021

作者其他论文 更多>>