您好,欢迎访问北京市农林科学院 机构知识库!

Band Depth Analysis and Partial Least Square Regression Based Winter Wheat Biomass Estimation Using Hyperspectral Measurements

文献类型: 外文期刊

作者: Fu Yuan-yuan 1 ; Wang Ji-hua 1 ; Yang Gui-jun 2 ; Song Xiao-yu 2 ; Xu Xin-gang 2 ; Feng Hai-kuan 2 ;

作者机构: 1.Zhejiang Univ, Inst Appl Remote Sensing & Informat Technol, Hangzhou 310029, Zhejiang, Peoples R China

2.Beijing Res Ctr Informat Technol Agr, Beijing 100097, Peoples R China

3.Minist Agr, Key Lab Agriinformat, Beijing 100097, Peoples R China

4.Minist Agr, Key Lab Agriinformat, Beijing 100097, Peopl

关键词: Hyperspectral remote sensing;Winter wheat;biomass;Band depth analysis;Partial least square regression

期刊名称:SPECTROSCOPY AND SPECTRAL ANALYSIS ( 影响因子:0.589; 五年影响因子:0.504 )

ISSN: 1000-0593

年卷期: 2013 年 33 卷 5 期

页码:

收录情况: SCI

摘要: The major limitation of using existing vegetation indices for crop biomass estimation is that it approaches a saturation level asymptotically for a certain range of biomass. In order to resolve this problem, band depth analysis and partial least square regression (PLSR) were combined to establish winter wheat biomass estimation model in the present study. The models based on the combination of band depth analysis and PLSR were compared with the models based on common vegetation indexes from the point of view of estimation accuracy, subsequently. Band depth analysis was conducted in the visible spectral domain (550 similar to 750 nm). Band depth, band depth ratio (BDR), normalized band depth index, and band depth normalized to area were utilized to represent band depth information. Among the calibrated estimation models, the models based on the combination of band depth analysis and PLSR reached higher accuracy than those based on the vegetation indices. Among them, the combination of BDR and PLSR got the highest accuracy (R-2=0.792, RMSE=0.164 kg . m(-2)). The results indicated that the combination of band depth analysis and PLSR could well overcome the saturation problem and improve the biomass estimation accuracy when winter wheat biomass is large.

  • 相关文献

[1]Winter wheat biomass estimation based on canopy spectra. Zheng Ling,Zhu Dazhou,Zhang Baohua,Wang Cheng,Zhao Chunjiang,Zheng Ling,Liang Dong. 2015

[2]The Study of Winter Wheat Biomass Estimation Model Based on Hyperspectral Remote Sensing. Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Dong, Yansheng,Teng, Xiaowei,Meng, Lumin. 2016

[3]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Jinling Zhao,Lin Yuan,Linsheng Huang,Dongyan Zhang,Jingcheng Zhang,Xiaohe Gu. 2013

[4]Leaf Area Index Estimation Using Vegetation Indices Derived From Airborne Hyperspectral Images in Winter Wheat. Xie, Qiaoyun,Huang, Wenjiang,Liang, Dong,Huang, Linsheng,Zhang, Dongyan,Chen, Pengfei,Wu, Chaoyang,Yang, Guijun,Zhang, Jingcheng. 2014

[5]CHARACTERIZATION OF POWDERY MILDEW IN WINTER WHEAT USING MULTI-ANGULAR HYPERSPECTRAL MEASUREMENTS. Zhao, Jinling,Yuan, Lin,Zhang, Dongyan,Zhang, Jingcheng,Gu, Xiaohe,Huang, Linsheng,Zhang, Dongyan. 2013

[6]Evaluation of spectral indices and continuous wavelet analysis to quantify aphid infestation in wheat. Luo, Juhua,Huang, Wenjiang,Yuan, Lin,Zhao, Chunjiang,Zhang, Jingcheng,Zhao, Jinling,Du, Shizhou.

[7]Monitoring of Winter Wheat Aboveground Fresh Biomass Based on Multi-Information Fusion Technology. Zheng Ling,Dong Da-ming,Zhang Bao-hua,Wang Cheng,Zhao Chun-jiang,Zheng Ling,Zhu Da-zhou. 2016

[8]Combined Multi-Temporal Optical and Radar Parameters for Estimating LAI and Biomass in Winter Wheat Using HJ and RADARSAR-2 Data. Jin, Xiuliang,Yang, Guijun,Xu, Xingang,Yang, Hao,Feng, Haikuan,Li, Zhenhai,Shen, Jiaxiao,Zhao, Chunjiang,Jin, Xiuliang,Yang, Guijun,Xu, Xingang,Yang, Hao,Feng, Haikuan,Li, Zhenhai,Shen, Jiaxiao,Zhao, Chunjiang,Jin, Xiuliang,Yang, Guijun,Zhao, Chunjiang,Xu, Xingang,Zhao, Chunjiang,Lan, Yubin. 2015

[9]Estimation of Winter Wheat Biomass and Yield by Combining the AquaCrop Model and Field Hyperspectral Data. Jin, Xiuliang,Kumar, Lalit,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Li, Zhenhai,Xu, Xingang,Yang, Guijun,Wang, Jihua. 2016

[10]Spectroscopic Leaf Level Detection of Powdery Mildew for Winter Wheat Using Continuous Wavelet Analysis. Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Huang Wen-jiang,Chen Li-ping,Zhang Dong-yan,Zhang Jing-cheng,Yuan Lin,Wang Ji-hua,Zhang Dong-yan,Huang Wen-jiang. 2012

[11]Determination of Cr, Zn, As and Pb in Soil by X-Ray Fluorescence Spectrometry Based on a Partial Least Square Regression Model. Lu, Anxiang,Wang, Jihua,Pan, Ligang,Lu, Anxiang,Qin, Xiangyang,Wang, Jihua,Zhu, Dazhou,Sun, Jiang. 2011

[12]ESTIMATION OF LEAF AREA INDEX BY USING MULTI-ANGULAR HYPERSPECTRAL IMAGING DATA BASED ON THE TWO-LAYER CANOPY REFLECTANCE MODEL. Liao, Qinhong,Zhao, Chunjiang,Yang, Guijun,Wang, Jihua,Zhang, Dongyan,Liao, Qinhong,Zhang, Dongyan,Coburn, Craig,Wang, Zhijie. 2013

[13]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Jinling Zhao,Dongyan Zhang,Juhua Luo,Dacheng Wang,Wenjiang Huang. 2012

[14]Hyperspectral Discrimination and Response Characteristics of Stressed Rice Leaves Caused by Rice Leaf Folder. Liu, Zhanyu,Ding, Xiaodong,Zhou, Bin,Liu, Zhanyu,Cheng, Jia-an,Huang, Wenjiang,Li, Cunjun,Xu, Xingang,Shi, Jingjing. 2012

[15]Identifying Leaf-Scale Wheat Aphids Using the Near-Ground Hyperspectral Pushbroom Imaging Spectrometer. Zhao, Jinling,Zhang, Dongyan,Luo, Juhua,Wang, Dacheng,Huang, Wenjiang. 2012

[16]Estimation of carotenoid content at the canopy scale using the carotenoid triangle ratio index from in situ and simulated hyperspectral data. Kong, Weiping,Huang, Wenjiang,Zhou, Xianfeng,Kong, Weiping,Zhou, Xianfeng,Song, Xiaoyu,Casa, Raffaele. 2016

[17]Associating new spectral features from visible and near infrared regions with optimal combination principle to monitor leaf nitrogen concentration in barley. Xu Xin-Gang,Zhao Chun-Jiang,Wang Ji-Hua,Li Cun-Jun,Yang Xiao-Dong. 2013

[18]New Vegetation Index Fusing Visible-Infrared and Shortwave Infrared Spectral Feature for Winter Wheat LAI Retrieval. Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Xu Xin-gang,Jin Xiu-liang,Zhang Jing-cheng,Song Xiao-yu,Li Xin-chuan,Bao Yan-song. 2013

[19]Retrieving Soybean Leaf Area Index from Unmanned Aerial Vehicle Hyperspectral Remote Sensing: Analysis of RF, ANN, and SVM Regression Models. Yuan, Huanhuan,Yang, Guijun,Wang, Yanjie,Liu, Jiangang,Yu, Haiyang,Feng, Haikuan,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong,Yuan, Huanhuan,Li, Changchun,Wang, Yanjie,Yuan, Huanhuan,Yang, Guijun,Liu, Jiangang,Feng, Haikuan,Yang, Xiaodong,Yang, Guijun,Yu, Haiyang,Xu, Bo,Zhao, Xiaoqing,Yang, Xiaodong. 2017

[20]A Method to Reconstruct the Solar-Induced Canopy Fluorescence Spectrum from Hyperspectral Measurements. Zhao, Feng,Guo, Yiqing,Verhoef, Wout,Gu, Xingfa,Liu, Liangyun,Yang, Guijun. 2014

作者其他论文 更多>>