您好,欢迎访问北京市农林科学院 机构知识库!

Modeling the Soil Water Retention Curves of Soil-Gravel Mixtures with Regression Method on the Loess Plateau of China

文献类型: 外文期刊

作者: Wang, Huifang 1 ; Xiao, Bo 1 ; Wang, Mingyu 2 ; Shao, Ming'an 3 ;

作者机构: 1.Beijing Acad Agr & Forestry Sci, Beijing Res & Dev Ctr Grass & Environm, Beijing, Peoples R China

2.Chinese Acad Sci, Grad Univ, Ctr Water Syst Secur, Beijing, Peoples R China

3.Chinese Acad Sci, Inst Soil & Water Conservat, State Key Lab Soil Eros & Dryland Farming Loess P, Yangling, Shaanxi, Peoples R China

期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )

ISSN: 1932-6203

年卷期: 2013 年 8 卷 3 期

页码:

收录情况: SCI

摘要: Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present.

  • 相关文献
作者其他论文 更多>>