您好,欢迎访问吉林省农业科学院 机构知识库!

Response of root morphology, physiology and endogenous hormones in maize (Zea mays L.) to potassium deficiency

文献类型: 外文期刊

作者: Zhao Xin-hue 1 ; Yu Hai-qiu 1 ; Wen Jing 1 ; Wang Xiao-guang 1 ; Du Qi 1 ; Wang Jing 1 ; Wang Qiao 1 ;

作者机构: 1.Shenyang Agr Univ, Coll Agron, Shenyang 110866, Peoples R China

2.Jilin Acad Agr Sci, Agrobiotechnol Res Inst, Changchun 130124, Peoples R China

关键词: potassium deficiency;maize;root morphology;physiological variation;endogenous hormone

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2016 年 15 卷 4 期

页码:

收录情况: SCI

摘要: Potassium (K) deficiency is one of the major abiotic stresses which has drastically influenced maize growth and yield around the world. However, the physiological mechanism of K deficiency tolerance is not yet fully understood. To identify the differences of root morphology, physiology and endogenous hormones at different growing stages, two maize inbred lines 90-21-3 (tolerance to K deficiency) and D937 (sensitive to K deficiency) were cultivated in the long-term K fertilizer experimental pool under high potassium (+K) and low potassium (K) treatments. The results indicated that the root length, volume and surface area of 90-21-3 were significantly higher than those of D937 under K treatment at different growing stages. It was noteworthy that the lateral roots of 90-21-3 were dramatically higher than those of D937 at tasselling and flowering stage under K treatment. Meanwhile, the values of superoxide dismutase (SOD) and oxidizing force of 90-21-3 were apparently higher than those of D937, whereas malondialdehyde (MDA) content of D937 was obviously increased. Compared with +K treatment, the indole-3-acetic acid (IAA) content of 90-21-3 was largely increased under K treatment, whereas it was sharply decreased in D937. On the contrary, abscisic acid (ABA) content of 90-21-3 was slightly increased, but that of D937 was significantly increased. The zeatin riboside (ZR) content of 90-21-3 was significantly decreased, while that of D937 was relatively increased. These results indicated that the endogenous hormones were stimulated in 90-21-3 to adjust lateral root development and to maintain the physiology function thereby alleviating K deficiency.

  • 相关文献

[1]Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency. Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang,Cheng, Shuai,Soomro, Ayaz Ali,Liu, Zhigang,Gu, Riliang,Mi, Guohua,Yuan, Lixing,Chen, Fanjun,Li, Pengcheng,Zhuang, Zhongjuan,Cai, Hongguang. 2016

[2]Phosphorus and nitrogen interactions in field-grown soybean as related to genetic attributes of root morphological and nodular traits. Kuang, RB,Liao, H,Yan, XL,Dong, YS. 2005

[3]Meta-analysis of constitutive QTLs for disease resistance in maize and its synteny conservation in the rice genome. Zhao, L.,Wang, Q. Y.,Liu, H. J.,Zhang, C. X.,Li, X. H.. 2015

[4]Genome-wide analysis of the maize (Zea may L.) CPP-like gene family and expression profiling under abiotic stress. Song, X. Y.,Zhang, Y. Y.,Wu, F. C.,Zhang, L.. 2016

[5]QTL mapping of resistance to Sporisorium reiliana in maize. Lubberstedt, T,Xia, XC,Tan, G,Liu, X,Melchinger, AE. 1999

[6]Inhibition of the spread of endophytic Sporisorium reilianum renders maize resistance to head smut. Zhao, Xianrong,Ye, Jianrong,Wei, Lai,Zhang, Nan,Zuo, Weiliang,Chao, Qing,Xu, Mingliang,Zhao, Xianrong,Xing, Yuexian,Tan, Guoqing,Chao, Qing. 2015

[7]EFFECT OF PLANT GROWTH REGULATORS ON MAIZE (ZEA MAYS L.) AGRONOMIC CHARACTERISTICS, STALK LODGING AND YIELD UNDER HIGH PLANTING DENSITY IN NORTHEAST CHINA. Cao, Qingjun,Song, Fengbin,Cao, Qingjun,Gang, Li,Yang, Fentuan,Yao, Liang,Cao, Qingjun,Diallo, Lamine,Cui, Jinhu. 2016

[8]Effect of environmental conditions on the genotypic difference in nitrogen use efficiency in maize. Cai Hong-Guang,Mi Guo-Hua,Chen Fan-Jun,Cai Hong-Guang,Gao Qiang. 2011

[9]Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. Gu, Riliang,Chen, Fanjun,Long, Lizhi,Cai, Hongguang,Liu, Zhigang,Yang, Jiabo,Wang, Lifeng,Mi, Guohua,Zhang, Fusuo,Yuan, Lixing,Gu, Riliang,Li, Huiyong,Li, Junhui,Cai, Hongguang,Wang, Lifeng,Li, Huiyong. 2016

[10]Research Progress on Transformation Maize Mediated by Agrobacterithm Tumefaciens. Li, Xiuping,Li, Xiuping,Jiang, Lijing,Liu, Na. 2011

[11]ZmWAK, a quantitative resistance gene to head smut in maize, improves yield performance by reducing the endophytic pathogen Sporisorium reiliana. Konlasuk, Suvimon,Zhang, Nan,Zuo, Weiliang,Zhang, Boqi,Xu, Mingliang,Xing, Yuexian,Tan, Guoqing.

[12]Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Cai, Hongguang,Chu, Qun,Yuan, Lixing,Liu, Jianchao,Chen, Xiaohui,Chen, Fanjun,Mi, Guohua,Zhang, Fusuo,Cai, Hongguang.

[13]Establishment and optimization of a regionally applicable maize gene-flow model. Luo, Weihong,Hu, Ning,Hu, Jichao,Jiang, Xiaodong,Chen, Wanlong,Yao, Kemin,Lu, Zongzhi,Peng, Yufa,Zhang, Ming,Jia, Shirong,Pei, Xinwu.

[14]Detection of QTLs controlling fast kernel dehydration in maize (Zea mays L.). Qian, Y. L.,Guo, J.,Wang, J.,Qi, Y. C.,Li, T. C.,Zhang, W.,Ruan, L.,Zuo, X. L.,Zhang, X. Q.,Wang, L. F.,Chen, J.,Chen, B. R.,Lv, G. H.,Wu, Z. C.. 2016

[15]Isolation and characterization of a novel pollen-specific promoter in maize (Zea mays L.). Wang, He,Fan, Mingxia,Wang, He,Fan, Mingxia,Zhang, Chunyu,Ma, Wenjuan,Chang, Jing,Huang, Senxin,Lin, Feng,Wang, He,Wang, Guohong,Shi, Lei,Wei, Zhengyi.

[16]Large-scale analysis of phosphorylated proteins in maize leaf. Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Lu, Tian-Cong,Shen, Zhuo,Chen, Yi-Bo,Wang, Bai-Chen,Bi, Ying-Dong,Wang, Hong-Xia,Li, Xiao-hui.

[17]Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Zhao, Xianrong,Wei, Lai,Chao, Qing,Zuo, Weiliang,Xu, Mingliang,Tan, Guoqing,Xing, Yuexian,Luebberstedt, Thomas.

[18]Transcriptome Profile Analysis of Maize Seedlings in Response to High-salinity, Drought and Cold Stresses by Deep Sequencing. Shan, Xiaohui,Yuan, Yaping,Li, Yidan,Jiang, Yu,Jiang, Zhilei,Hao, Wenyuan.

[19]Identification of quantitative trait loci for resistance to Curvularia leaf spot of maize. Hou, Jing,Zhang, Yan,Tao, Yong-Fu,Xu, Ming-Liang,Xing, Yue-xian,Tan, Guo-qing.

[20]ZmDBF3, a Novel Transcription Factor from Maize (Zea mays L.), Is Involved in Multiple Abiotic Stress Tolerance. Zhou, Wei,Jia, Cheng-Guo,Wu, Xian,Yu, Gang,Zhang, Xiang-Hui,Liu, Jin-Liang,Pan, Hong-Yu,Zhou, Wei,Hu, Rui-Xue,Wu, Xian.

作者其他论文 更多>>