您好,欢迎访问吉林省农业科学院 机构知识库!

A comparison about the paddy fields applicability of two water stress index model by infrared automatic monitoring the canopy temperature of rice

文献类型: 外文期刊

作者: Gao, Mingchao 1 ; Gao, Shijie 1 ; Li, Xiaohui 1 ; Gao, Jiping 2 ; Li, Jihong 1 ; Zhang, Wenzhong 2 ; Dong, Yingshan 1 ;

作者机构: 1.Jilin Acad Agr Sci, Crops Resources Res Inst, Northeast Agr Res Ctr China, Changchun 136000, Peoples R China

2.Shenyang Agr Univ, Key Lab Northern Japon Rice Genet & Breeding, Key Lab Northeast Rice Biol & Breeding, Rice Res Inst,Minist Agr,Minist Educ, Shenyang 110866, Peoples R China

关键词: Rice;Canopy Temperature;Crop Water Stress Index (CWSI);The Canopy-air Temperature Differences

期刊名称:PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING 2015 (ICMMCCE 2015)

ISSN: 2352-538X

年卷期: 2015 年 39 卷

页码:

收录情况: SCI

摘要: The canopy temperatures of rice were observed by the infrared temperature measuring equipment under different irrigation conditions in this experiment, and also it applied the CWSI empirical model and theoretical model to measure whether the crop were suffered from water stress or not. Meanwhile, in this paper, it gave a compare of these two models on the effect of monitoring rice water stress. The result showed that under non-ideal condition, the CWSI value of the empirical model was very volatile and often overflowed the range of 0-1, however, the theoretical model was relatively stable. So it concluded that the CWSI theoretical model was much suitable for the application on monitoring the rice water stress. The results showed that the theoretical model has a good relation with the above indexes, and it can reflect the characteristics of the crop water stress. In addition, some practical experience and viewpoints were given in this paper.

  • 相关文献

[1]Identification of quantitative trait loci for cadmium accumulation and distribution in rice (Oryza sativa). Yan, Yong-Feng,Lestari, Puji,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lee, Kyu-Jong,Kim, Moon Young,Lee, Suk-Ha,Lee, Byun-Woo,Yan, Yong-Feng,Lestari, Puji.

[2]Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice. Qi, Dongling,Cao, Guilan,Han, Longzhi,Qi, Dongling,Guo, Guizhen,Zhang, Junguo,Zhang, Sanyuan,Han, Longzhi,Lee, Myung-Chul,Suh, Seok-Cheol,Zhou, Qingyang. 2008

[3]Eastern Jilin Province Rice Cold Damage Risk Vulnerability Curve Established Based on CERES-Rice Model. Guo, Chunming,Zhu, Meng,Zhang, Jiquan,Cao, Tiehua. 2016

[4]Laser Irradiation-Induced DNA Methylation Changes Are Heritable and Accompanied with Transpositional Activation of mPing in Rice. Li, Siyuan,Xia, Qiong,Yu, Xiaoming,Gao, Xiang,Liu, Bao,Li, Siyuan,Wang, Fang,Ma, Jian,Kou, Hongping,Lin, Xiuyun. 2017

[5]Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Long, LK,Lin, XY,Zhai, JZ,Kou, HP,Yang, W,Liu, B. 2006

[6]In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization. Lin, Xiuyun,Long, Likun,Shan, Xiaohui,Zhang, Sanyuan,Shen, Sile,Liu, Bao. 2006

[7]Sugary Endosperm is Modulated by Starch Branching Enzyme IIa in Rice (Oryza sativa L.). Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Lee, Yunjoo,Lee, Gileung,Jang, Su,Kim, Backki,Woo, Mi-Ok,Koh, Hee-Jong,Choi, Min-Seon,Yoon, Mi-Ra,Piao, Rihua,Chin, Joong Hyoun. 2017

[8]Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments. Jiang, Wenzhu,Pan, Hong-Yu,Du, Xinglin,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Jin, Yong-Mei,Lee, Joohyun,Lee, Kang-Ie,Piao, Rihua,Koh, Hee-Jong,Han, Longzhi,Shin, Jin-Chul,Jin, Rong-De,Cao, Tiehua. 2011

[9]Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). Wang, Huan,Shi, Decheng,Liu, Bao,Yang, Chunwu,Zhang, Meishan,Guo, Rui,Lin, Xiuyun. 2012

[10]Fine Mapping of qTGW3-1, a QTL for 1 000-Grain Weight on Chromosome 3 in Rice. Zhang Qiang,Yao Guo-xin,Hu Guang-long,Chen Chao,Tang Bo,Zhang Hong-liang,Li Zi-chao,Zhang Qiang,Yao Guo-xin. 2012

[11]A new approach for obtaining rapid uniformity in rice (Oryza sativa L.) via a 3x x 2x cross. Xing, Shaochen,Cai, Yuhong,Zhou, Kaida. 2010

[12]Identification of QTLs associated with salt or alkaline tolerance at the seedling stage in rice under salt or alkaline stress. Liang, Jing-long,Zhao, Zheng-wu,Zhang, Tao,Liang, Jing-long,Qu, Ying-ping,Ma, Xiao-ding,Cao, Gui-lan,Han, Long-zhi,Yang, Chun-gang,Zhang, San-yuan.

[13]Estimating nutrient uptake requirements for rice in China. Xu, Xinpeng,He, Ping,Zhao, Shicheng,Qiu, Shaojun,Zhou, Wei,Xie, Jiagui,Hou, Yunpeng,He, Ping,Pampolino, Mirasol F.,Johnston, Adrian M..

[14]Simultaneous improvement in cold tolerance and yield of temperate japonica rice (Oryza sativa L.) by introgression breeding. Meng, Lijun,Meng, Lijun,Chen, Kai,Cui, Yanru,Xu, Jianlong,Li, Zhikang,Lin, Xiuyun,Wang, Jinming.

[15]DNA Methylation Changes Induced in Rice by Exposure to High Concentrations of the Nitric Oxide Modulator, Sodium Nitroprusside. Ou, Xiufang,Zhuang, Tingting,Yin, Wenchao,Miao, Yiling,Wang, Bo,Zhang, Yunhong,Lin, Xiuyun,Xu, Chunming,Liu, Bao,Zhuang, Tingting,Lin, Xiuyun,von Wettstein, Diter,Rustgi, Sachin,von Wettstein, Diter,Rustgi, Sachin.

[16]Identification of rice blast resistance genes using international monogenic differentials. Wang, J. C.,Wen, J. W.,Liu, W. P.,Liu, X. M.,Li, L.,Jiang, Z. Y.,Zhang, J. H.,Guo, X. L.,Ren, J. P.,Jia, Y..

作者其他论文 更多>>