您好,欢迎访问山西省农业科学院 机构知识库!

Development of EST-SSR markers related to disease resistance and their application in genetic diversity and evolution analysis in Gossypium

文献类型: 外文期刊

作者: Wang, B. H. 1 ; Rong, P. 1 ; Cai, X. X. 1 ; Wang, W. 3 ; Zhu, X. Y. 1 ; Chen, C. J. 1 ; Xu, Y. Y. 1 ; Huang, X. J. 1 ; Zhuan 1 ;

作者机构: 1.Nantong Univ, Sch Life Sci, Nantong, Jiangsu, Peoples R China

2.Shanxi Acad Agr Sci, Agr Biotechnol Res Ctr, Taiyuan, Shanxi, Peoples R China

3.Agr Sci Inst Coastal Region Jiangsu, Yancheng, Jiangsu, Peoples R China

关键词: Disease resistance;Evolution;Gossypium;Expressed sequence tag-simple sequence repeat;Genetic diversity

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2015 年 14 卷 3 期

页码:

收录情况: SCI

摘要: Cotton (Gossypium spp) is one of the most economically important crops that provide the world's most widely used natural fiber. Diseases such as Fusarium wilt and particularly Verticillium wilt seriously affect cotton production, and thus breeding for disease resistance is one of the most important goals of cotton breeding programs. Currently, potential exists to improve disease resistance in cultivated cotton. Increasing the understanding of the distribution, structure, and organization of genes or quantitative trait loci for disease resistance will help the breeders improve crop yield even in the event of disease. To facilitate the mapping of disease-resistance quantitative trait loci to achieve disease-resistant molecular breeding in cotton, it is necessary to develop polymorphic molecular markers. The objective of this study was to develop simple sequence repeat markers based on cotton expressed sequence tags for disease resistance. The efficacy of these simple sequence repeat markers, their polymorphisms, and cross-species transferability were evaluated. Their value was further investigated based on genetic diversity and evolution analysis. In this study, the unique sequences used to develop markers were compared with the G. arboretum and G. raimondii genome sequences to investigate their position, homology, and collinearity between G. arboretum and G. raimondii.

  • 相关文献

[1]Development of EST-SSR markers related to salt tolerance and their application in genetic diversity and evolution analysis in Gossypium. B.H. Wang,P. Zhu,Y.L. Yuan,C.B. Wang,C.M. Yu,H.H. Zhang,X.Y. Zhu,W. Wang,C.B. Yao,Z.M. Zhuang,P. Li. 2014

[2]Pistil drip following pollination: a simple in planta Agrobacterium-mediated transformation in cotton. Chen TianZi,Wu ShenJie,Zhao Jun,Guo WangZhen,Zhang TianZhen,Wu ShenJie.

[3]Molecular evolution of the plastid genome during diversification of the cotton genus. Zhiwen Chen,Hua, Jinping,Wendel, Jonathan F.,Corrinne E. Grover,Pengbo Li,Yumei Wang,Hushuai Nie,Yanpeng Zhao,Meiyan Wang,Fang Liu,Zhongli Zhou,Xingxing Wang,Xiaoyan Cai,Kunbo Wang,Jonathan F. Wendel,Jinping Hua.

[4]Creation of the technique of interspecific hybridization for breeding in cotton. Liang, ZL,Jiang, RQ,Zhong, WN,He, JX,Sun, CW,Qou, ZJ,Liu, DL,Zhang, XX,Zhao, GZ,Niu, YZ,Wang, JD,Wang, Y,Liang, LM,Wang, LM. 2002

[5]Cytoplasmic diversity of the cotton genus as revealed by chloroplast microsatellite markers. Li, Pengbo,Hua, Jinping,Li, Pengbo,Liu, Huimin,Li, Zhaohu,Hua, Jinping. 2014

[6]Construction and initial analysis of five Fosmid libraries of mitochondrial genomes of cotton (Gossypium). Li ShuangShuang,Liu GuoZheng,Chen ZhiWen,Li PengBo,Hua JinPing,Wang YuMei,Li PengBo. 2013

[7]Molecular Mapping of the Major Resistance Quantitative Trait Locus qHS2.09 with Simple Sequence Repeat and Single Nucleotide Polymorphism Markers in Maize. Weng, Jianfeng,Hao, Zhuanfang,Xie, Chuanxiao,Li, Mingshun,Zhang, Degui,Bai, Li,Liu, Changlin,Zhang, Shihuang,Li, Xinhai,Liu, Xianjun,Wang, Zhenhua,Zhang, Lin,Wang, Jianjun.

[8]Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. He, Runli,Chang, Zhijian,Liu, Jianxia,Chang, Zhijian,Zhan, Haixian,Zhang, Xiaojun,Yang, Zujun,Yuan, Zongying.

[9]Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS center dot 2BL) translocation line. Qi, Zengjun,Du, Pei,Qian, Baoli,Zhuang, Lifang,Chen, Huafeng,Chen, Tingting,Shen, Jian,Guo, Jie,Feng, Yigao,Pei, Ziyou.

[10]Expressing p20 hairpin RNA of Citrus tristeza virus confers Citrus aurantium with tolerance/resistance against stem pitting and seedling yellow CTV strains. Bei Xue-jun,Zhang Yong-yan,Lu Zhi-ming,Cheng Chun-zhen,Bei Xue-jun,Zhang Yong-yan,Zhong Guang-yan,Yang Jia-wei,Yan Hu-bin,Cheng Chun-zhen,Zhong Guang-yan. 2015

[11]Development of NBS-related microsatellite (NRM) markers in hexaploid wheat. Qiao, Linyi,Qiao, Linyi,Zhang, Xiaojun,Li, Xin,Zheng, Jun,Chang, Zhijian,Zhang, Lei.

[12]Genetic Diversity of Buckwheat Cultivars (Fagopyrum tartaricum Gaertn.) Assessed with SSR Markers Developed from Genome Survey Sequences. Hou, Siyu,Sun, Zhaoxia,Bin Linghu,Xu, Dongmei,Zhang, Bin,Wang, Xingchun,Han, Yuanhuai,Li, HongYing,Han, Yuanhuai,Zhang, Lijun,Qiao, Zhijun,Wu, Bin,Zhang, Lijun,Qiao, Zhijun,Hou, Siyu,Sun, Zhaoxia,Zhang, Bin,Wang, Xingchun,Han, Yuanhuai,Li, HongYing.

[13]Molecular diversity of Chinese Cucurbita moschata germplasm collections detected by AFLP markers. Chang, Zhijian,Zhan, Haixian,Wu, Junxin,Wu, Qingshan,Wu, Junxin,Chang, Zhijian,Xie, Shulian. 2011

[14]Genetic Diversity of Wild Daylily in Taihang Mountain Areas Based on ISSR Markers. Cao, D. M.,Zhang, C.,Kang, L. F.,Duan, J. J.,Ma, X. L.,Yan, G. J.,Wang, Y. S.,Zhang, X. C.. 2013

[15]TRANSCRIPTOMIC ANALYSIS, GENIC SSR DEVELOPMENT, AND GENETIC DIVERSITY OF PROSO MILLET (PANICUM MILIACEUM; POACEAE). Hou, Siyu,Sun, Zhaoxia,Li, Yaoshen,Wang, Yijie,Ling, Hubin,Xing, Guofang,Han, Yuanhuai,Li, Hongying,Hou, Siyu,Xing, Guofang,Han, Yuanhuai. 2017

[16]Genetic variation and population structure of the oriental fruit moth Grapholita molesta in Shanxi, a major pome fruits growing region in North China. Yang, Jing,Liu, Zhong-Fang,Fan, Ji-Qiao,Fan, Ren-Jun,Yang, Jing,Liu, Zhong-Fang,Fan, Ji-Qiao,Fan, Ren-Jun,Wu, Yu-Peng,Ma, Rui-Yan. 2016

[17]An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus Sativus L.) and Development of SSR and KASP Markers. Hao, Xiaopeng,Wang, Yan,Chang, Jianwu,Yang, Tao,Liu, Rong,Yao, Yang,Ren, Guixing,Zhang, Hongyan,Wang, Dong,Zong, Xuxiao,Hu, Jinguo,Burlyaeva, Marina. 2017

[18]Analysis of genetic diversity among different geographical populations and determination of biotypes of Bemisia tabaci in China. Zhang, LP,Zhang, YJ,Zhang, WJ,Wu, QJ,Xu, BY,Chu, D. 2005

[19]The PpLTP1 Primary Allergen Gene is Highly Conserved in Peach and Has Small Variations in Other Prunus Species. Zhou, Xiang,Gao, Zhong-shan,Li, Xiong-wei,Jia, Hui-juan,Wu, Hong-xia,Xie, Rang-jin,Gao, Zhong-shan,Wang, Zhi-qiang,Cao, Ke,Yu, Ming-liang,Chen, Shuang-jian,Li, Ying-hui,Wang, Hui-ying,van Ree, Ronald.

[20]Genetic diversity of melon landraces (Cucumis melo L.) in the Xinjiang Uygur Autonomous Region on the basis of simple sequence repeat markers. Zhang, Yongbing,Aierken, Yasheng,Ma, Xinli,Yi, Hongping,Wu, Mingzhu,Fan, Xiangbin.

作者其他论文 更多>>