您好,欢迎访问山西省农业科学院 机构知识库!

TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana

文献类型: 外文期刊

作者: Xu, Q. 1 ; Feng, W. J. 1 ; Peng, H. R. 1 ; Ni, Z. F. 1 ; Sun, Q. X. 1 ;

作者机构: 1.China Agr Univ, Beijing Key Lab Crop Genet Improvement, Key Lab Crop Genom & Genet Improvement MOA, State Key Lab Agrobiotechnol,Key Lab Crop Heteros, Beijing 100193, Peoples R China

2.ShanXi Acad Agr Sci, Cotton Res Inst, Yuncheng 044000, Peoples R China

关键词: wheat;TaWRKY71;seed germination;abiotic stress

期刊名称:CEREAL RESEARCH COMMUNICATIONS ( 影响因子:0.85; 五年影响因子:1.067 )

ISSN: 0133-3720

年卷期: 2014 年 42 卷 1 期

页码:

收录情况: SCI

摘要: Members of WRKY gene family encode transcription factors involved in plant developmental processes and response to biotic and abiotic stresses. In order to understand the function of the TaWRKY71 gene, a homologue gene was isolated and characterised in wheat (Triticum aestivum L.) genotype TAM107. Tissue-specific gene expression profiles indicated that TaWRKY71 was constitutively expressed in roots, stems, leaves, stamen and pistil. The relative expression of TaWRKY71 was elucidated under ABA treatment and other abiotic stresses. In agreement with this, several putative cis-acting elements involved in ABA-response, drought-inducibility, low-temperature and heat response were detected in the promoter region of TaWRKY71. The function of TaWRKY71 was further determined by transforming Arabidopsis thaliana. Transgenic plants over-expressing TaWRKY71 displayed enhanced seed germination under ABA treatment and were tolerant to salt and drought stresses. These results indicate that TaWRKY71 gene might play important roles in seed germination and abiotic stress response.

  • 相关文献

[1]Salt Stress-induced Injury is Associated with Hormonal Alteration in Kentucky Bluegrass. Zhang, Xunzhong,Wu, Wenli,Ervin, Erik H.,Shang, Chao,Wu, Wenli,Harich, Kim. 2018

[2]The Tartary Buckwheat Genome Provides Insights into Rutin Biosynthesis and Abiotic Stress Tolerance. Zhang, Lijun,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Zhang, Lijun,Han, Yuanhuai,Ma, Mingchuan,Liu, Longlong,Zhou, Jianping,Nan, Chenghu,Qin, Yongjun,Cui, Lin,Liu, Huimin,Qiao, Zhijun,Li, Xiuxiu,Ma, Bin,Gao, Qiang,Du, Huilong,Li, Yan,Cao, Yinghao,Qi, Ming,Lu, Hongwei,Liang, Chengzhi,Li, Xiuxiu,Du, Huilong,Lu, Hongwei,Liang, Chengzhi,Han, Yuanhuai,Zhu, Yaxin,Wang, Jun. 2017

[3]An analysis of homoeologous microsatellites from Triticum urartu and Triticum monococcum. Bai, JR,Liu, KF,Jia, X,Wang, DW.

[4]Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiation. Sun, Yi,Yang, Liyan,Han, Rong,Sun, Yi.

[5]TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). Zheng, Jun,Liu, Hong,Wang, Yuquan,Zhang, Xueyong,Zheng, Jun,Liu, Hong,Wang, Yuquan,Zhang, Xueyong,Zheng, Jun,Liu, Hong,Wang, Yuquan,Wang, Lanfen,Chang, Xiaoping,Jing, Ruilian,Hao, Chenyang,Zhang, Xueyong,Zheng, Jun.

[6]Introduction of multi-alien chromatins carrying different powdery mildew-resistant genes from rye and Haynaldia villosa into wheat genome. Yuan, WY,Tomita, M,Sun, SC,Yasumuro, Y.

[7]Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.). Lv, Geng-Yin,Guo, Xiao-Guang,Xie, Li-Ping,Xie, Chang-Gen,Zhang, Xiao-Hong,Yang, Yuan,Xiao, Lei,Tang, Yu-Ying,Guo, Ai-Guang,Xu, Hong,Xie, Chang-Gen,Guo, Ai-Guang,Xu, Hong,Pan, Xing-Lai. 2017

[8]A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Luo, Pei-Gao,Hu, Xue-Yun,Zhang, Min,Zhang, Huai-Qiong,Ren, Zheng-Long,Chang, Zhi-Jian. 2009

[9]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[10]Protein characteristics of Chinese black-grained wheat. Li, WD,Beta, T,Sun, SC,Corke, H. 2006

[11]Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp trichophorum. Yang, ZJ,Li, GR,Chang, ZJ,Zhou, JP,Ren, ZL. 2006

[12]Effects of phenanthrene on seed germination and some physiological activities of wheat seedling. Wei, Haiying,Song, Shanjuan,Liu, Ting,Tian, Hongling. 2014

[13]DYNAMIC QTL ANALYSIS OF CHLOROPHYLL CONTENT DURING GRAIN FILLING STAGE IN WINTER WHEAT (TRITICUM AESTIVUM L.). Yang, Bin,Yan, Xue,Wang, Huiyan,Li, Xiaoyu,Ma, Haoxiang,Wang, Shuguang,Sun, Daizhen,Yang, Bin,Jing, Ruilian. 2016

[14]Gene Expression Profiles of Response to Water Stress at the Jointing Stage in Wheat. Shi Jun-feng,Mao Xin-guo,Jing Rui-lian,Pang Xiao-bin,Chang Xiao-ping,Shi Jun-feng,Shi Jun-feng,Wang Yu-guo. 2010

[15]Comparative Proteomic Analysis of Wheat (Triticum aestivum L.) Hybrid Necrosis. Jiang Qi-yan,Hu Zheng,Zhang Hui,Pan Xing-lai. 2013

[16]Effects of variety, year of cultivation and sulphur supply on the accumulation of free asparagine in the grain of commercial wheat varieties. Curtis, Tanya Y.,Wang, Ruiyun,Halford, Nigel G.,Powers, Stephen J.,Wang, Ruiyun,Wang, Ruiyun. 2018

[17]Genetic basis of traits related to stomatal conductance in wheat cultivars in response to drought stress. Wang, S. G.,Jia, S. S.,Sun, D. Z.,Wang, H. Y.,Dong, F. F.,Ma, H. X.,Jing, R. L.,Ma, G..

[18]Study on the interaction between 3 flavonoid compounds and alpha-amylase by fluorescence spectroscopy and enzymatic kinetics. Li, Y.,Gao, F.,Gao, F.,Zhao, C.,Shan, F.,Bian, J..

[19]Evolution of the Aux/IAA Gene Family in Hexaploid Wheat. Qiao, Linyi,Qiao, Linyi,Zhang, Xiaojun,Li, Xin,Chang, Jianzhong,Zhan, Haixian,Guo, Huijuan,Zheng, Jun,Chang, Zhijian,Zhang, Li,Zhang, Lei.

[20]The impact of resistant and susceptible wheat cultivars on the multiplication of Heterodera filipjevi and H-avenae in parasite-infested soil. Cui, L.,Sun, L.,Gao, X.,Song, W.,Wang, X. M.,Li, H. J.,Cui, L.,Liu, Z. Y.,Cui, L.,Li, H. L.,Tang, W. H..

作者其他论文 更多>>