您好,欢迎访问山西省农业科学院 机构知识库!

Effects of phenanthrene on seed germination and some physiological activities of wheat seedling

文献类型: 外文期刊

作者: Wei, Haiying 1 ; Song, Shanjuan 1 ; Tian, Hongling 2 ; Liu, Ting 1 ;

作者机构: 1.Shanxi Univ, Coll Environm & Resource Sci, Taiyuan 030006, Shanxi, Peoples R China

2.Shanxi Acad Agr Sci, Inst Cash Crop, Fengyang 032200, Shanxi, Peoples R China

关键词: Phenanthrene;Wheat;Physiological activities;Germination

期刊名称:COMPTES RENDUS BIOLOGIES ( 影响因子:1.583; 五年影响因子:2.123 )

ISSN: 1631-0691

年卷期: 2014 年 337 卷 2 期

页码:

收录情况: SCI

摘要: Polycyclic aromatic hydrocarbons (PAHs) are one of the highly persistent organic pollutants, and they are toxic to plants and other living organisms, including human beings. To analyze the response of higher plant to PAHs, we investigated the effects of phenanthrene (PHE) on seed germination and various physiological changes of wheat seedlings. Specifically, we investigated growth, chlorophyll content, lipid peroxidation (LPO), activities of antioxidant enzymes and H2O2 accumulation. The results showed that PHE inhibited seed germination, affected the growth and chlorophyll level of wheat seedlings. Furthermore, PHE elevated the levels of LPO and induced H2O2 accumulation in leaf tissues in a dose-dependent manner, accompanied by the changes in the antioxidant status. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), displayed a decreasing trend with the increasing of PHE concentration. The results indicated that PHE could exert oxidative damages in the early development stage of wheat and the harmfulness occurred mainly in samples with higher concentrations of PHE. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  • 相关文献

[1]Damage repair effect of He-Ne laser on wheat exposed to enhanced ultraviolet-B radiation. Sun, Yi,Yang, Liyan,Han, Rong,Sun, Yi.

[2]Effects of components in culture medium on glutamate decarboxylase activity and gamma-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Bai, Qingyun,Gu, Zhenxin,Cao, Xiaohong,Li, Yan,Liu, Kunlun,Bai, Qingyun,Chai, Meiqing. 2009

[3]Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Yin, MQ,Huang, MJ,Ma, BZ,Ma, TC. 2005

[4]An analysis of homoeologous microsatellites from Triticum urartu and Triticum monococcum. Bai, JR,Liu, KF,Jia, X,Wang, DW.

[5]TEF-7A, a transcript elongation factor gene, influences yield-related traits in bread wheat (Triticum aestivum L.). Zheng, Jun,Liu, Hong,Wang, Yuquan,Zhang, Xueyong,Zheng, Jun,Liu, Hong,Wang, Yuquan,Zhang, Xueyong,Zheng, Jun,Liu, Hong,Wang, Yuquan,Wang, Lanfen,Chang, Xiaoping,Jing, Ruilian,Hao, Chenyang,Zhang, Xueyong,Zheng, Jun.

[6]Introduction of multi-alien chromatins carrying different powdery mildew-resistant genes from rye and Haynaldia villosa into wheat genome. Yuan, WY,Tomita, M,Sun, SC,Yasumuro, Y.

[7]Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.). Lv, Geng-Yin,Guo, Xiao-Guang,Xie, Li-Ping,Xie, Chang-Gen,Zhang, Xiao-Hong,Yang, Yuan,Xiao, Lei,Tang, Yu-Ying,Guo, Ai-Guang,Xu, Hong,Xie, Chang-Gen,Guo, Ai-Guang,Xu, Hong,Pan, Xing-Lai. 2017

[8]A new stripe rust resistance gene transferred from Thinopyrum intermedium to hexaploid wheat (Triticum aestivum). Luo, Pei-Gao,Hu, Xue-Yun,Zhang, Min,Zhang, Huai-Qiong,Ren, Zheng-Long,Chang, Zhi-Jian. 2009

[9]Molecular Characterization of a New Wheat-Thinopyrum intermedium Translocation Line with Resistance to Powdery Mildew and Stripe Rust. Zhan, Haixian,Li, Guangrong,Pan, Zhihui,Yang, Zujun,Zhan, Haixian,Zhang, Xiaojun,Hu, Jin,Li, Xin,Qiao, Linyi,Guo, Huijuan,Chang, Zhijian,Jia, Juqing,Chang, Zhijian. 2015

[10]Protein characteristics of Chinese black-grained wheat. Li, WD,Beta, T,Sun, SC,Corke, H. 2006

[11]Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp trichophorum. Yang, ZJ,Li, GR,Chang, ZJ,Zhou, JP,Ren, ZL. 2006

[12]DYNAMIC QTL ANALYSIS OF CHLOROPHYLL CONTENT DURING GRAIN FILLING STAGE IN WINTER WHEAT (TRITICUM AESTIVUM L.). Yang, Bin,Yan, Xue,Wang, Huiyan,Li, Xiaoyu,Ma, Haoxiang,Wang, Shuguang,Sun, Daizhen,Yang, Bin,Jing, Ruilian. 2016

[13]Gene Expression Profiles of Response to Water Stress at the Jointing Stage in Wheat. Shi Jun-feng,Mao Xin-guo,Jing Rui-lian,Pang Xiao-bin,Chang Xiao-ping,Shi Jun-feng,Shi Jun-feng,Wang Yu-guo. 2010

[14]TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana. Xu, Q.,Feng, W. J.,Peng, H. R.,Ni, Z. F.,Sun, Q. X.,Xu, Q.. 2014

[15]Comparative Proteomic Analysis of Wheat (Triticum aestivum L.) Hybrid Necrosis. Jiang Qi-yan,Hu Zheng,Zhang Hui,Pan Xing-lai. 2013

[16]Effects of variety, year of cultivation and sulphur supply on the accumulation of free asparagine in the grain of commercial wheat varieties. Curtis, Tanya Y.,Wang, Ruiyun,Halford, Nigel G.,Powers, Stephen J.,Wang, Ruiyun,Wang, Ruiyun. 2018

[17]Genetic basis of traits related to stomatal conductance in wheat cultivars in response to drought stress. Wang, S. G.,Jia, S. S.,Sun, D. Z.,Wang, H. Y.,Dong, F. F.,Ma, H. X.,Jing, R. L.,Ma, G..

[18]Study on the interaction between 3 flavonoid compounds and alpha-amylase by fluorescence spectroscopy and enzymatic kinetics. Li, Y.,Gao, F.,Gao, F.,Zhao, C.,Shan, F.,Bian, J..

[19]Evolution of the Aux/IAA Gene Family in Hexaploid Wheat. Qiao, Linyi,Qiao, Linyi,Zhang, Xiaojun,Li, Xin,Chang, Jianzhong,Zhan, Haixian,Guo, Huijuan,Zheng, Jun,Chang, Zhijian,Zhang, Li,Zhang, Lei.

[20]The impact of resistant and susceptible wheat cultivars on the multiplication of Heterodera filipjevi and H-avenae in parasite-infested soil. Cui, L.,Sun, L.,Gao, X.,Song, W.,Wang, X. M.,Li, H. J.,Cui, L.,Liu, Z. Y.,Cui, L.,Li, H. L.,Tang, W. H..

作者其他论文 更多>>