您好,欢迎访问河南省农业科学院 机构知识库!

QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.)

文献类型: 外文期刊

作者: Liang Hui-zhen 1 ; Yu Yong-liang 1 ; Wang Shu-feng 1 ; Lian Yun 1 ; Wang Ting-feng 1 ; Wei Yan-li 1 ; Gong Peng-tao 2 ; L 1 ;

作者机构: 1.Henan Acad Agr Sci, Natl Soybean Improvement Subctr Zhengzhou, Ind Crops Res Inst, Zhengzhou 450002, Peoples R China

2.Hainan Inst Trop Agr Resources, Sanya 572025, Peoples R China

3.Shanxi Acad Agr Sci, Econ Crops Inst, Fenyang 032200, Peoples R China

4.Hebei Acad Agr & Forestry Sci, Inst Cereal & Oil Crops, Shijiazhuang 050031, Peoples R China

关键词: soybean;SSR;QTL;quality;isoflavone

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2010 年 9 卷 8 期

页码:

收录情况: SCI

摘要: Soybean (Glycine max L. Merr.) is the world's foremost source of edible plant oil and proteins, meantime, the biologically active secondary metabolites such as saponins and isoflavones are benefit to human health. The objective of this study was to identify quantitative trait loci (QTL) and epistatic interactions associated with isoflavone, protein, and oil contents in soybean seeds. An F(13) recombinant inbred line (RIL) comprising 474 lines was derived from a cross between Jindou 23 and Huibuzhi cultivars. SSR technique was employed for mapping of the QTLs. The QTLs for isoflavone, protein, and oil contents were analyzed and 23 QTLs were detected based on the constructed linkage map. Six QTLs for isoflavone content were localized in linkage groups J, N, D2, and G, eleven QTLs for oil content were localized in the linkage groups A1, A2, B2, C2, and D2, and six QTLs for protein content were localized in linkage groups B2, C2, G, and H1. The correlative analysis demonstrated that the isoflavone content had significant correlation with protein content, while significantly negative correlations was existed between oil and protein content, and significantly positive correlations was existed between protein and oil content. All these findings have laid an important basis for the marker assisted breeding in soybean. The phenotypic correlations of quantitative traits may be resulted from the correlation of the QTL controlling those traits.

  • 相关文献

[1]Verification and fine-mapping of QTLs conferring days to flowering in soybean using residual heterozygous lines. Su ChengFu,Lu WeiGuo,Zhao TuanJie,Gai JunYi,Su ChengFu,Lu WeiGuo,Zhao TuanJie,Gai JunYi,Su ChengFu,Lu WeiGuo,Zhao TuanJie,Gai JunYi,Lu WeiGuo. 2010

[2]基于玉米重组自交系籽粒脱水速率的相关性状分析. 王延召,魏良明,周波,宋迎辉. 2016

[3]大豆异黄酮与脂肪、蛋白质含量基因定位分析. 梁慧珍,王树峰,余永亮,练云,王庭峰,位艳丽,巩鹏涛,刘学义,方宣钧. 2009

[4]Predicting the chemical composition of intact kernels in maize hybrids by near infrared reflectance spectroscopy. Wei, LR,Jiang, HY,Li, JH,Yan, YL,Dai, JR. 2005

[5]Genetic dissection of seed vigour under artificial ageing conditions using two joined maize recombinant inbred line populations. Ku, Lixia,Cui, Xinjian,Guo, Shulei,Tian, Zhiqiang,Han, Tuo,Ren, Zhenzhen,Zhang, Liangkun,Su, Huihui,Chen, Yanhui,Cheng, Fangfang,Qi, Jianshuang.

[6]Epistatic and QTLxenvironment interaction effects on leaf area-associated traits in maize. Wei, Xiaomin,Wang, Xiaobo,Zhou, Jinlong,Shi, Yong,Wang, Huitao,Dou, Dandan,Song, Xiaoheng,Li, Guohui,Ku, Lixia,Chen, Yanhui,Wei, Xiaomin,Wang, Xiaobo,Zhou, Jinlong,Shi, Yong,Wang, Huitao,Dou, Dandan,Song, Xiaoheng,Li, Guohui,Ku, Lixia,Chen, Yanhui,Wei, Xiaomin,Guo, Shulei.

[7]Identification of QTLs involved in pod-shatter resistance in Brassica napus L.. Wen, Y. C.,Zhang, S. F.,Wang, J. P.,Zhu, J. C.,He, J. P.,Cao, J. H.,Yi, B.,Wen, J..

[8]Association mapping of seed oil and protein contents in upland cotton. Liu, Guizhen,Wang, Sen,Li, Xinghe,Zhu, Xiefei,Zhang, Tianzhen,Mei, Hongxian.

[9]The construction of a genetic linkage map of non-heading Chinese cabbage (Brassica campestris ssp chinensis Makino). Cheng, Yan,Zhang, Jingyi,Wang, Qian,Ban, Qingyu,Hou, Xilin,Hou, Xilin,Geng, Jianfeng. 2009

[10]Development of molecular markers linked to the wheat powdery mildew resistance gene Pm4b and marker validation for molecular breeding. Yi, Y. J.,Li, H. Y.,Wang, F.,Yi, Y. J.,An, L. Z.,Wang, X. L.,Huang, X. Q.. 2008

[11]大豆品质性状QTL定位的研究进展. 位艳丽,余永亮,练云,王树峰,王庭峰,梁慧珍. 2010

[12]6种大豆粒形性状的QTL定位. 梁慧珍,王树峰,余永亮,王庭峰,巩鹏涛,方宣钧,刘学义,赵双进,张孟臣,李卫东. 2008

[13]谷子萌芽期抗旱相关QTL定位研究. 代小冬,朱灿灿,王春义,秦娜,宋迎辉,代书桃,李君霞. 2020

[14]玉米穗三叶叶宽QTL定位及Meta分析. 张莹莹,杨青,代资举,王艳,王新涛. 2019

[15]谷子苗期耐低氮相关性状的QTL分析. 秦娜,付森杰,朱灿灿,代书桃,宋迎辉,魏昕,王春义,叶珍言,李君霞. 2023

[16]玉米不同叶位叶面积的QTL定位. 安允权,张君,席章营,李明娜,李沛. 2016

[17]大豆抗胞囊线虫(Heterodera glycines Ichinohe)基因定位研究进展. 卢为国,李卫东,梁惠珍,王树峰,孙慎. 2005

[18]大豆α-生育酚的遗传与QTL分析. 梁慧珍,余永亮,许兰杰,杨红旗,董薇,谭政伟,李磊,裴新涌,刘新梅. 2019

[19]花生主要品质性状的QTLs定位分析. 张新友,韩锁义,徐静,严玫,刘华,汤丰收,董文召,黄冰艳. 2012

[20]不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析. 梁慧珍,董薇,许兰杰,余永亮,杨红旗,谭政伟,许阳,陈鑫伟. 2017

作者其他论文 更多>>