您好,欢迎访问山西省农业科学院 机构知识库!

QTL Mapping of Isoflavone, Oil and Protein Contents in Soybean (Glycine max L. Merr.)

文献类型: 外文期刊

作者: Liang Hui-zhen 1 ; Yu Yong-liang 1 ; Wang Shu-feng 1 ; Lian Yun 1 ; Wang Ting-feng 1 ; Wei Yan-li 1 ; Gong Peng-tao 2 ; L 1 ;

作者机构: 1.Henan Acad Agr Sci, Natl Soybean Improvement Subctr Zhengzhou, Ind Crops Res Inst, Zhengzhou 450002, Peoples R China

2.Hainan Inst Trop Agr Resources, Sanya 572025, Peoples R China

3.Shanxi Acad Agr Sci, Econ Crops Inst, Fenyang 032200, Peoples R China

4.Hebei Acad Agr & Forestry Sci, Inst Cereal & Oil Crops, Shijiazhuang 050031, Peoples R China

关键词: soybean;SSR;QTL;quality;isoflavone

期刊名称:AGRICULTURAL SCIENCES IN CHINA ( 影响因子:0.82; 五年影响因子:0.997 )

ISSN: 1671-2927

年卷期: 2010 年 9 卷 8 期

页码:

收录情况: SCI

摘要: Soybean (Glycine max L. Merr.) is the world's foremost source of edible plant oil and proteins, meantime, the biologically active secondary metabolites such as saponins and isoflavones are benefit to human health. The objective of this study was to identify quantitative trait loci (QTL) and epistatic interactions associated with isoflavone, protein, and oil contents in soybean seeds. An F(13) recombinant inbred line (RIL) comprising 474 lines was derived from a cross between Jindou 23 and Huibuzhi cultivars. SSR technique was employed for mapping of the QTLs. The QTLs for isoflavone, protein, and oil contents were analyzed and 23 QTLs were detected based on the constructed linkage map. Six QTLs for isoflavone content were localized in linkage groups J, N, D2, and G, eleven QTLs for oil content were localized in the linkage groups A1, A2, B2, C2, and D2, and six QTLs for protein content were localized in linkage groups B2, C2, G, and H1. The correlative analysis demonstrated that the isoflavone content had significant correlation with protein content, while significantly negative correlations was existed between oil and protein content, and significantly positive correlations was existed between protein and oil content. All these findings have laid an important basis for the marker assisted breeding in soybean. The phenotypic correlations of quantitative traits may be resulted from the correlation of the QTL controlling those traits.

  • 相关文献

[1]大豆的综合利用及加工术. 张海生. 2012

[2]大豆异黄酮与脂肪、蛋白质含量基因定位分析. 梁慧珍,王树峰,余永亮,练云,王庭峰,位艳丽,巩鹏涛,刘学义,方宣钧. 2009

[3]棉花抗黄萎病QTL初步定位. 吴翠翠,简桂良,王安乐,刘方,张先亮,宋国立,黎绍惠,陈朝辉,王春英,张香娣,王坤波. 2010

[4]QTL detection for node of first fruiting branch and its height in upland cotton (Gossypium hirsutum L.). Li, Chengqi,Dong, Na,Zhao, Haihong,Wang, Rui,Wang, Qinglian,Wang, Changbiao,Wang, Xiaoyun,Xia, Zhe,Converse, Richard.

[5]High efficiency organogenesis and analysis of genetic stability of the regenerants in Solanum melongena. Xing, Y.,Yu, Y.,Luo, X.,Zhao, B.,Guo, Y-D.,Zhang, J-N.. 2010

[6]An RNA Sequencing Transcriptome Analysis of Grasspea (Lathyrus Sativus L.) and Development of SSR and KASP Markers. Hao, Xiaopeng,Wang, Yan,Chang, Jianwu,Yang, Tao,Liu, Rong,Yao, Yang,Ren, Guixing,Zhang, Hongyan,Wang, Dong,Zong, Xuxiao,Hu, Jinguo,Burlyaeva, Marina. 2017

[7]Identification of Quantitative Trait Loci (QTLs) for Flowering Time Using SSR Marker in Maize under Water Stress. Xiao, YN,Li, XH,Zhang, SH,Wang, XD,Li, MS,Zheng, YL.

[8]6种大豆粒形性状的QTL定位. 梁慧珍,王树峰,余永亮,王庭峰,巩鹏涛,方宣钧,刘学义,赵双进,张孟臣,李卫东. 2008

[9]花生吸水膨胀期耐低温性状QTL定位. 刘海龙,白冬梅,宁洽,郭建斌,徐志军,陈小姝,孙晓苹,姜慧芳,髙华援. 2019

[10]大豆单株荚数QTL定位及整合. 杨玉花,白志元,张瑞军,卫一超,卫保国. 2019

[11]绿豆分子遗传图谱构建及若干农艺性状的QTL定位分析. 王建花,张耀文,程须珍,王丽侠. 2017

[12]小麦DH群体的构建及其应用研究. 蔡岳,梁增浩. 2013

[13]玉米抗矮花叶病QTL的定位分析. 刘小红,张红伟,张红梅,郑祖平,荣廷昭,王富荣,谭振波. 2006

[14]棉花早熟性QTL定位研究进展. 高玉虹,姜艳丽,李朋波,宋建中,皇甫张龙,胡晓丽,黄晋玲,石跃进. 2012

[15]棉花抗黄萎病分子育种的现状、问题与展望. 高灵路,王长彪,汪保华. 2011

[16]玉米抗旱育种研究进展. 任志强,王晓清,卜华虎,肖建红,张宁,杨慧珍. 2019

[17]小麦叶锈病成株抗性研究进展与展望. 张小辉,畅志坚,乔麟轶,郭慧娟,詹海仙,李欣,任永康,张晓军. 2016

[18]陆地棉遗传图谱构建与纤维品质性状QTL定位. 李朋波,曹美莲,刘惠民,杨六六,陈耕. 2006

[19]棉花抗黄萎病分子育种的现状、问题与展望(英文). 汪保华,高灵路,王长彪. 2011

[20]玉米胚大小及其相关性状的QTL分析. 李晓伟,马海林,张人予,王敏,杨小红,李建生. 2023

作者其他论文 更多>>