您好,欢迎访问广东省农业科学院 机构知识库!

Environmental pH and ionic strength influence the electron-transfer capacity of dissolved organic matter

文献类型: 外文期刊

作者: Lu, Qin 1 ; Yuan, Yong 1 ; Tao, Ya 1 ; Tang, Jia 1 ;

作者机构: 1.Guangdong Inst Ecoenvironm & Soil Sci, Guangdong Key Lab Agr Environm Pollut Integrated, Guangzhou 510650, Guangdong, Peoples R China

关键词: Chronoamperometry;Cyclic voltammetry;Dissolved organic matter;Electron-transfer capacity;Fluorescence spectroscopy;Gel-permeation chromatography

期刊名称:JOURNAL OF SOILS AND SEDIMENTS ( 影响因子:3.308; 五年影响因子:3.586 )

ISSN: 1439-0108

年卷期: 2015 年 15 卷 11 期

页码:

收录情况: SCI

摘要: Dissolved organic matter (DOM) plays an important role in the cycling of elements and the transformation of pollutants in the environment due to its electron-transfer capacity (ETC), but ETC may be affected by environmental factors such as pH and ionic strength. This study was aimed to reveal the effects of pH and ionic strength on the ETC of DOM and the possible mechanisms. DOM was prepared into solutions with various pH values (4, 6, 7, 8, and 10) and ionic strength (0.001, 0.01, 0.1, and 0.5 mol/L KCl). ETC of DOM including electron-accepting capacity (EAC) and electron-donating capacity (EDC) was determined with chronoamperometry. Spectroscopic and chromatographic properties of DOM were evaluated to obtain related structural information to explore the possible mechanisms for the ETC changes. Both the EAC and EDC of DOM increased consistently with increasing pH from 4 to 10. EAC and EDC increased with increasing ionic strength, peaked at 0.1 mol/L KCl, and then decreased. Gel permeation chromatogram displayed different molecular size distribution for the DOM in solution with different pH and ionic strength. Environmental pH and ionic strength influence the ETC of DOM by altering the conformation of DOM molecules.

  • 相关文献

[1]Effects of the Fe-II/Cu-II Interaction on Copper Aging Enhancement and Pentachlorophenol Reductive Transformation in Paddy Soil. Wang, Yong-kui,Tao, Liang,Chen, Man-jia,Li, Fang-bai,Wang, Yong-kui,Chen, Man-jia,Wang, Yong-kui,Chen, Man-jia. 2012

[2]Reductive transformation of 2-nitrophenol by Fe(II) species in gamma-aluminum oxide suspension. Tao, Liang,Li, Fangbai,Sun, Kewen,Tao, Liang,Sun, Kewen,Feng, Chunhua,Tao, Liang,Sun, Kewen. 2009

[3]Electrochemical evidence of Fe(II)/Cu(II) interaction on titanium oxide for 2-nitrophenol reductive transformation. Tao, Liang,Li, Fangbai. 2012

[4]REDUCTIVE ACTIVITY OF ADSORBED Fe(II) ON IRON (OXYHYDR)OXIDES FOR 2-NITROPHENOL TRANSFORMATION. Tao, Liang,Li, Fangbai,Wang, Yongkui,Tao, Liang,Wang, Yongkui,Sun, Kewen.

[5]Effects of dissolved organic matter on adsorbed Fe(II) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions. Zhu, Zhenke,Zhu, Zhenke,Tao, Liang,Li, Fangbai,Zhu, Zhenke. 2013

[6]2-Nitrophenol reduction promoted by S-putrefaciens 200 and biogenic ferrous iron: The role of different size-fractions of dissolved organic matter. Zhu, Zhenke,Tao, Liang,Li, Fangbai,Zhu, Zhenke,Zhu, Zhenke. 2014

作者其他论文 更多>>