您好,欢迎访问广东省农业科学院 机构知识库!

Genetic analysis and pyramiding of two gall midge resistance genes (Gm-2 and Gm-6t) in rice (Oryza sativa L.)

文献类型: 外文期刊

作者: Katiyar, S 1 ; Verulkar, S 2 ; Chandel, G 2 ; Zhang, Y 2 ; Huang, B 2 ; Bennett, J 2 ;

作者机构: 1.Indira Gandhi Agr Univ, Raipur, Madhya Pradesh, India

2.Indira Gandhi Agr Univ, Raipur, Madhya Pradesh, India; Guangdong Acad Agr Sci, Inst Plant Protect, Guangzhou, Peoples R China; Int Rice Res Inst, Div Plant Breeding Genet & Biochem, Los Banos, Laguna, Philippines

关键词: allelic relationship;gall midge;gene pyramiding;insect resistance;Orseolia oryzae;rice

期刊名称:EUPHYTICA ( 影响因子:1.895; 五年影响因子:2.181 )

ISSN: 0014-2336

年卷期: 2001 年 122 卷 2 期

页码:

收录情况: SCI

摘要: Asian rice gall midge ( Orseolia oryzae) is a major pest across much of south and southeast Asia. This pest is genetically diverse and many gall midge biotypes are known to exist in each country. During the last three decades, host plant resistance has proved to be the most effective mechanism of controlling the Asian rice gall midge. Seven genes conditioning resistance to gall midge larvae have been identified in rice (Oryza sativa) and are being used in cultivar improvement programs. However, some of these genes are rendered ineffective by new gall midge biotypes. Increased understanding of genetics, inheritance, allelic relationships and linkage is necessary to maximise the durability of major gene resistance by the pyramiding of these genes. The two genes, Gm-2 and Gm-6(t), are known to confer resistance against a number of biotypes in India and China, respectively. An F-3 population derived from a cross between Duokang #1 (donor of Gm-6(t)) and Phalguna (donor of Gm-2) was screened against Chinese gall midge biotype 4 at Guangdong, China, and Indian gall midge biotype 1 at Raipur, India. At each location, separately, a single gene governed resistance. The parallel segregation of 417 F-3 progenies for both biotypes at two locations revealed that recombination had occurred between the two genes, establishing that the two genes are not allelic. However, the two genes Gm-2 and Gm-6(t), were found to be linked with a distance of similar to 16.3 cM. A number of lines homozygous at one locus and segregating for the other locus were identified and selected. These lines were selfed to obtain lines homozygous for the favourable alleles at both loci (two locus pyramids). This is the first report on use of conventional host-pest interaction method for pyramiding two closely located Gm-resistance loci of dissimilar effects. The implications of deployment of these pyramids within and across country borders, with reference to the prevailing gall midge populations are discussed.

  • 相关文献

[1]Molecular mapping of gene Gm-6(t) which confers resistance against four biotypes of Asian rice gall midge in China. Katiyar, SK,Tan, Y,Huang, B,Chandel, G,Xu, Y,Zhang, Y,Xie, Z,Bennett, J. 2001

[2]ESTABLISHMENT AND APPLICATION OF A SET OFBLAST IN RICE. Li Xiaofang,Luo Wenyong,Xiao Xin,Mao Xingxue,Liu Yanzhuo. 2001

[3]Disruption of Secondary Wall Cellulose Biosynthesis Alters Cadmium Translocation and Tolerance in Rice Plants. Song, Xue-Qin,Liu, Li-Feng,Zhang, Bao-Cai,Gao, Ya-Ping,Liu, Xiang-Ling,Zhou, Yi-Hua,Jiang, Yi-Jun,Lin, Qing-Shan,Ling, Hong-Qing. 2013

[4]SWATH-MS Quantitative Analysis of Proteins in the Rice Inferior and Superior Spikelets during Grain Filling. Zhu, Fu-Yuan,Xu, Xuezhong,Peng, Xinxiang,Zhu, Guohui,Zhu, Fu-Yuan,Chen, Mo-Xian,Ye, Neng-Hui,Liu, Tie-Yuan,Li, Hao-Xuan,Wang, Guan-Qun,Jin, Yu,Zhang, Jianhua,Zhu, Fu-Yuan,Ye, Neng-Hui,Zhang, Jianhua,Su, Yu-Wen,Cao, Yun-Ying,Lin, Sheng,Gu, Yong-Hai,Chan, Wai-Lung,Lo, Clive. 2016

[5]Improving nitrogen fertilization in rice by site-specific N management. A review. Peng, Shaobing,Buresh, Roland J.,Dobermann, Achim,Huang, Jianliang,Cui, Kehui,Zhong, Xuhua,Zou, Yingbin,Tang, Qiyuan,Yang, Jianchang,Wang, Guanghuo,Liu, Yuanying,Hu, Ruifa,Zhang, Fusuo. 2010

[6]Quantifying the interactive effect of leaf nitrogen and leaf area on tillering of rice. Zhong, XH,Peng, SB,Sanico, AL,Liu, HX. 2003

[7]OsEF3, a homologous gene of Arabidopsis ELF3, has pleiotropic effects in rice. Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Yang, X. O.,Chen, W.,Ma, Y.,Hu, J.,Li, S.,Fu, C.,Chen, X.. 2009

[8]Development of elite restoring lines by integrating blast resistance and low amylose content using MAS. Xiao Wu-ming,Peng Xin,Luo Li-xin,Liang Ke-qin,Wang Jia-feng,Huang Ming,Liu Yong-zhu,Guo Tao,Luo Wen-long,Wang Hui,Chen Zhi-qiang,Yang Qi-yun,Zhu Xiao-yuan. 2018

[9]Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China. Hu, Ruifa,Cao, Jianmin,Huang, Jikun,Peng, Shaobing,Huang, Jianliang,Zhong, Xuhua,Zou, Yingbin,Yang, Jianchang,Buresh, Roland J.. 2007

[10]Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines. Li, Xiao-Fang,Liu, Zhi-Xia,Lu, Dong-Bo,Liu, Yan-Zhuo,Mao, Xing-Xue,Li, Xiao-Fang,Li, Zhi-Xin,Li, Xiao-Fang,Li, Hua-Jun. 2013

[11]A novel functional gene associated with cold tolerance at the seedling stage in rice. Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin,Zhao, Junliang,Zhang, Shaohong,Dong, Jingfang,Yang, Tifeng,Mao, Xingxue,Liu, Qing,Wang, Xiaofei,Liu, Bin. 2017

[12]Effect of Environment and Genetic Recombination on Subspecies and Economic Trait Differentiation in the F-2 and F-3 Generations from indica-japonica Hybridization. Wang He-tong,Jin Feng,Xu Hai,Cheng Ling,Xia Ying-jun,Liu Chun-xiang,Chen Wen-fu,Xu Zheng-jin,Jiang Yi-jun,Lin Qing-shan. 2014

[13]Identification of quantitative trait loci for phosphorus use efficiency traits in rice using a high density SNP map. Wang, Kai,Cui, Kehui,Liu, Guoling,Xie, Weibo,Yu, Huihui,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Wang, Kai,Cui, Kehui,Liu, Guoling,Pan, Junfeng,Huang, Jianliang,Nie, Lixiao,Shah, Farooq,Peng, Shaobing,Pan, Junfeng,Shah, Farooq. 2014

[14]Integrating Small RNA Sequencing with QTL Mapping for Identification of miRNAs and Their Target Genes Associated with Heat Tolerance at the Flowering Stage in Rice. Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Liu, Qing,Yang, Tifeng,Zhang, Shaohong,Mao, Xingxue,Zhao, Junliang,Wang, Xiaofei,Dong, Jingfang,Liu, Bin,Yu, Ting. 2017

[15]Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China. Wang, Xiangqin,Liu Chuanping,Li, Fangbai,Xu, Xianghua,Lv, Yahui,Zeng, Xiaoduo.

[16]Substitution mapping of QTLs for blast resistance with SSSLs in rice (Oryza sativa L.). Zhang, Yuexiong,Shan, Zelin,Qiao, Weihua,Xie, Qingjun,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Ding, Xiaohua,Zhang, Guiquan,Yang, Jianyuan,Chen, Shen,Zhu, Haitao,Zhang, Zemin,Zeng, Ruizhen,Zhang, Guiquan. 2012

[17]Design and test of operation parameters for rice air broadcasting by unmanned aerial vehicle. Li Jiyu,Lan Yubin,Zhou Zhiyan,Zeng Shan,Huang Cong,Yao Weixiang,Li Jiyu,Lan Yubin,Zhou Zhiyan,Zeng Shan,Huang Cong,Yao Weixiang,Zhang Yang,Zhu Qiuyang. 2016

[18]SPECIATION OF ARSENIC IN RICE BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY-HYDRIDE GENERATION-ATOMIC FLUORESCENCE SPECTROMETRY WITH MICROWAVE-ASSISTED EXTRACTION. Dai, Shouhui,Wang, Min,Mao, Xuefei,Huang, Yatao,Yang, Hui,Dai, Shouhui,Wang, Min,Mao, Xuefei,Huang, Yatao,Yang, Hui,Wang, Fuhua,Yang, Hui,Wang, Fuhua. 2014

[19]A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O-rufipogon) and barnyard grass (Echinochloa crusgalli). Yuan, Qian-Hua,Shi, Lei,Qian, Qian,Liu, Wu-Ge,Kuang, Ba-Geng,Zeng, Da-Li,Liao, Yi-Long,Cao, Bin,Jia, Shi-Rong. 2006

[20]The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Liang, Guoqing,Sun, Jingwen,He, Ping,Zhou, Wei,Wang, Xiubin,He, Ping,Tang, Shuanhu,Yang, Shaohai.

作者其他论文 更多>>