您好,欢迎访问江苏省农业科学院 机构知识库!

Cytogenetics and germplasm enrichment in Brassica allopolyploids in China

文献类型: 外文期刊

作者: Li Zai-yun 1 ; Wang You-ping 2 ;

作者机构: 1.Huazhong Agr Univ, Coll Plant Sci & Technol, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Hubei, Peoples R China

2.Yangzhou Univ, Coll Biosci & Biotechnol, Yangzhou 225009, Jiangsu, Peoples R China

3.Jiangsu Acad Agr Sci, Key Lab Agrobiol Jiangsu, Nanjing 210014, Jiangsu, Peoples R China

关键词: Brassica napus;germplasm;Brassica rapa;Brassica juncea;cytogenetics

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2017 年 16 卷 12 期

页码:

收录情况: SCI

摘要: This paper reviews research advances in cytogenetics and germplasm innovation in Brassica allopolyploids, particularly oilseed rape (Brassica napus), in China. Three naturally evolved Brassica allotetraploid species are cytologically stable but tend to preferentially lose several chromosomes from one subgenome when induced by alien chromosome elimination. A-subgenome is extracted from B. napus, and the ancestral Brassica rapa was restituted after the total loss of C-subgenome chromosomes. Genome-wide genetic and epigenetic alterations were observed in both natural and synthetic Brassica allotetraploids. B. napus was subjected to extensive interspecific hybridization with landraces of B. rapa and Brassica juncea, which exhibit abundant phenotype variations, to widen the genetic diversity in breeding and select numerous elite germplasm resources and cultivars; these cultivars include the representative Zhongyou 821, which also parented numerous other varieties. Novel B. napus genotypes were obtained using Brassica trigenomic hybrids and allohexaploids (2n=54, AABBCC) by combining subgenomes from extant allotetraploids and diploids as bridge. Alien additions, substitutions, and translocations of the B. napus genome were developed by intergeneric/intertribal sexual and somatic hybridizations with several crucifers. Furthermore, mitochondrial DNA recombination promoted the production of novel cytoplasmic male sterile lines.

  • 相关文献

[1]Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide. Meng, De Kun,Yang, Zhi Min,Chen, Jian. 2011

[2]STUDY ON APETALOUS BREEDING IN RAPESEED (Brassica napus). Fu Shouzhong,Qi Cunkou,Pu Huiming,Zhang Jiefu. 2001

[3]Cytology of multisomic addition line "NJ04-8089" in Brassica napus L.. YUAN Shifeng,QI Cunkou. 2007

[4]Breeding of apetalous and dwarfish line APL03(Brassica napus). FU Shouzhong,ZHANG Jiefu,QI Cunkou,PU Huiming,GAO Jianqin,CHEN Xinjun. 2007

[5]Cadmium Disrupts the Balance between Hydrogen Peroxide and Superoxide Radical by Regulating Endogenous Hydrogen Sulfide in the Root Tip of Brassica rapa. Lv, Wenjing,Shi, Zhiqi,Chen, Jian,Lv, Wenjing,Yang, Lifei,Lv, Wenjing,Shi, Zhiqi,Chen, Jian,Xu, Cunfa,Shao, Jinsong,Xian, Ming. 2017

[6]Transcriptome Analysis of Brassica rapa Near-lsogenic Lines Carrying Clubroot-Resistant and -Susceptible Alleles in Response to Plasmodiophora brassicae during Early Infection. Chen, Jingjing,Pang, Wenxing,Piao, Zhongyun,Chen, Bing,Zhang, Chunyu,Zhang, Chunyu. 2016

[7]Patterns of Evolutionary Conservation of Ascorbic Acid-Related Genes Following Whole-Genome Triplication in Brassica rapa. Duan, Weike,Song, Xiaoming,Liu, Tongkun,Huang, Zhinan,Ren, Jun,Hou, Xilin,Du, Jianchang,Li, Ying,Du, Jianchang. 2015

[8]Nitrate Reductase-Dependent Nitric Oxide Production Is Involved in Microcystin-LR-Induced Oxidative Stress in Brassica rapa. Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Chen, Jian,Zhong, You Ming,Zhang, Hai Qiang,Shi, Zhi Qi,Zhang, Hai Qiang.

[9]Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Lu, Ying,Chen, Yu,McVetty, Peter B. E.,Li, Genyi,Zhang, Jiefu,Yuan, Yuxiang,Zhang, Xiaowei,Geng, Jianfeng,Cloutier, Sylvie.

[10]Perpetual Flowering in Strawberry Species. Cai, Weijian,Zurn, Jason D.,Bassil, Nahla V.,Hummer, Kim E.. 2017

[11]Inbreeding and coancestry of the major commercial fresh market peach cultivars in China. Ma, Ruijuan,Yu, Mingliang,Du, Ping,Shen, Zhijun,Byrne, David H.. 2006

[12]New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. Wang, Xiaodong,Yin, Yongtai,Gan, Lu,Yu, Longjiang,Li, Maoteng,Long, Yan,Zhang, Chunyu,Meng, Jinling,Long, Yan,Wang, Xiaodong,Liu, Liezhao. 2015

[13]Morphological Structure and Transcriptome Comparison of the Cytoplasmic Male Sterility Line in Brassica napus (SaNa-1A) Derived from Somatic Hybridization and Its Maintainer Line SaNa-1B. Du, Kun,Liu, Qier,Wu, Xinyue,Jiang, Jinjin,Wu, Jian,Fang, Yujie,Wang, Youping,Li, Aimin. 2016

[14]Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. Wang, Xiaodong,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Chen, Li,Xiang, Jun,Gan, Jianping,Wang, Aina,Wang, Hao,Tian, Jianhua,Zhao, Xiaoping,Zhao, Yajun,Zhao, Weiguo. 2016

[15]Phenotypic characterization and genetic analysis of a partially female-sterile mutant in Brassica napus. Li, Chun-Hong,Fu, San-Xiong,Chen, Xin-Jun,Qi, Cun-Kou. 2012

[16]Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu, Liping,Hu, Kaining,Wen, Jing,Yi, Bin,Shen, Jinxiong,Ma, Chaozhi,Tu, Jinxing,Fu, Tingdong,Zhang, Zhenqian,Guan, Chunyun,Chen, Song,Hua, Wei,Li, Jiana.

[17]Genome-Wide Identification of QTL for Seed Yield and Yield-Related Traits and Construction of a High-Density Consensus Map for QTL Comparison in Brassica napus. Zhao, Weiguo,Wang, Hao,Tian, Jianhua,Li, Baojun,Zhao, Weiguo,Wang, Hao,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Long, Yan,Xiang, Jun,Gan, Jianping,Li, Maoteng,Liang, Wusheng. 2016

[18]The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype. Hu, Qiong,Tong, Chaobo,Huang, Shunmou,Yu, Jingyin,Mei, Desheng,Shi, Jiaqin,Wang, Xinfa,Hu, Zhiyong,Dong, Caihua,Li, Jun,Liu, Shengyi,Hua, Wei,Wang, Hanzhong,Fan, Guangyi,Liu, Weiqing,Chen, Wenbin,Zeng, Peng,Wang, Xi,Liang, Xinming,Huang, Guodong,Zhang, He,Zhang, Yaolei,Li, Liangwei,Shi, Chengcheng,Wang, Jiahao,Xu, Xun,Liu, Xin,Zhou, Yongming,Meng, Jinling,Liu, Kede,Long, Yan,Guan, Mei,Guan, Chunyun,Chalhoub, Boulos,Li, Jiana,Du, Dezhi,Qi, Cunkou,Jiang, Liangcai,Fan, Guangyi,Liu, Xin,Fan, Guangyi,Lee, Simon Ming-Yuen,Fan, Guangyi,Lee, Simon Ming-Yuen.

[19]Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Fang, Yujie,Li, Jian,Jiang, Jinjin,Geng, Yulu,Wang, Jinglei,Wang, Youping,Fang, Yujie.

[20]Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Fu, San-Xiong,Qi, Cunkou,Cheng, Hao.

作者其他论文 更多>>