文献类型: 外文期刊
作者: Yao, Yihan 1 ; Yue, Jibo 1 ; Liu, Yang 2 ; Yang, Hao 3 ; Feng, Haikuan 3 ; Shen, Jianing 1 ; Hu, Jingyu 1 ; Liu, Qian 1 ;
作者机构: 1.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
2.China Agr Univ, Minist Educ, Key Lab Smart Agr Syst, Beijing 100083, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Minist Agr & Rural Affairs, Key Lab Quantitat Remote Sensing Agr, Beijing 100097, Peoples R China
关键词: unmanned aerial vehicle; maize growth stage; machine learning; vegetation index; texture feature
期刊名称:AGRICULTURE-BASEL ( 影响因子:3.3; 五年影响因子:3.5 )
ISSN:
年卷期: 2024 年 14 卷 7 期
页码:
收录情况: SCI
摘要: Maize, an important cereal crop and crucial industrial material, is widely used in various fields, including food, feed, and industry. Maize is also a highly adaptable crop, capable of thriving under various climatic and soil conditions. Against the backdrop of intensified climate change, studying the classification of maize growth stages can aid in adjusting planting strategies to enhance yield and quality. Accurate classification of the growth stages of maize breeding materials is important for enhancing yield and quality in breeding endeavors. Traditional remote sensing-based crop growth stage classifications mainly rely on time series vegetation index (VI) analyses; however, VIs are prone to saturation under high-coverage conditions. Maize phenotypic traits at different growth stages may improve the accuracy of crop growth stage classifications. Therefore, we developed a method for classifying maize growth stages during the vegetative growth phase by combining maize phenotypic traits with different classification algorithms. First, we tested various VIs, texture features (TFs), and combinations of VI and TF as input features to estimate the leaf chlorophyll content (LCC), leaf area index (LAI), and fractional vegetation cover (FVC). We determined the optimal feature inputs and estimation methods and completed crop height (CH) extraction. Then, we tested different combinations of maize phenotypic traits as input variables to determine their accuracy in classifying growth stages and to identify the optimal combination and classification method. Finally, we compared the proposed method with traditional growth stage classification methods based on remote sensing VIs and machine learning models. The results indicate that (1) when the VI+TFs are used as input features, random forest regression (RFR) shows a good estimation performance for the LCC (R2: 0.920, RMSE: 3.655 SPAD units, MAE: 2.698 SPAD units), Gaussian process regression (GPR) performs well for the LAI (R2: 0.621, RMSE: 0.494, MAE: 0.397), and linear regression (LR) exhibits a good estimation performance for the FVC (R2: 0.777, RMSE: 0.051, MAE: 0.040); (2) when using the maize LCC, LAI, FVC, and CH phenotypic traits to classify maize growth stages, the random forest (RF) classification method achieved the highest accuracy (accuracy: 0.951, precision: 0.951, recall: 0.951, F1: 0.951); and (3) the effectiveness of the growth stage classification based on maize phenotypic traits outperforms that of traditional remote sensing-based crop growth stage classifications.
- 相关文献
作者其他论文 更多>>
-
Improving potato AGB estimation to mitigate phenological stage impacts through depth features from hyperspectral data
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Bian, Mingbo;Ma, Yanpeng;Li, Jingbo;Xu, Bo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:AGB; Hyperspectral features; Deep features; SPA; LSTM; PLSR
-
Winter Wheat Yield Estimation with Color Index Fusion Texture Feature
作者:Yang, Fuqin;Yan, Jiayu;Guo, Lixiao;Tan, Jianxin;Meng, Xiangfei;Xiao, Yibo;Liu, Yang;Feng, Haikuan;Liu, Yang;Feng, Haikuan
关键词:UAV; color index; fusion texture; partial least squares; random forest
-
Pretrained Deep Learning Networks and Multispectral Imagery Enhance Maize LCC, FVC, and Maturity Estimation
作者:Hu, Jingyu;Feng, Hao;Shen, Jianing;Wang, Jian;Guo, Wei;Qiao, Hongbo;Yue, Jibo;Wang, Qilei;Liu, Yang;Liu, Yang;Feng, Haikuan;Yang, Hao;Niu, Qinglin;Niu, Qinglin
关键词:unmanned aerial vehicle; crop leaf chlorophyll content; fractional vegetation cover; maturity; deep learning; ensemble learning; maize
-
Improving potato above ground biomass estimation combining hyperspectral data and harmonic decomposition techniques
作者:Liu, Yang;Feng, Haikuan;Fan, Yiguang;Chen, Riqiang;Ma, Yanpeng;Bian, Mingbo;Yang, Guijun;Liu, Yang;Liu, Yang;Feng, Haikuan;Yue, Jibo
关键词:AGB; ASD; UHD185; Harmonic components; PLSR
-
A fast and lightweight detection model for wheat fusarium head blight spikes in natural environments
作者:Gao, Chunfeng;Guo, Wei;Gong, Zheng;Yue, Jibo;Fu, Yuanyuan;Yang, Chenghai;Feng, Haikuan
关键词:Deep learning; YOLOv5s; Fusarium head blight; Real -time detection; Lightweight architecture
-
A model suitable for estimating above-ground biomass of potatoes at different regional levels
作者:Liu, Yang;Fan, Yiguang;Ma, Yanpeng;Chen, Riqiang;Bian, Mingbo;Yang, Guijun;Feng, Haikuan;Yue, Jibo;Jin, Xiuliang
关键词:Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass
-
Real-time monitoring of maize phenology with the VI-RGS composite index using time-series UAV remote sensing images and meteorological data
作者:Feng, Ziheng;Ma, Xinming;Feng, Ziheng;Cheng, Zhida;Ren, Lipeng;Liu, Bowei;Zhang, Chengjian;Zhao, Dan;Sun, Heguang;Feng, Haikuan;Long, Huiling;Xu, Bo;Yang, Hao;Song, Xiaoyu;Yang, Guijun;Zhao, Chunjiang
关键词:UAV; Real-time; Composite index; Maize phenology; BBCH