A model suitable for estimating above-ground biomass of potatoes at different regional levels
文献类型: 外文期刊
作者: Liu, Yang 1 ; Fan, Yiguang 1 ; Yue, Jibo 2 ; Jin, Xiuliang 3 ; Ma, Yanpeng 1 ; Chen, Riqiang 1 ; Bian, Mingbo 1 ; Yang, Guijun 1 ; Feng, Haikuan 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Key Lab Quantitat Remote Sensing Agr, Minist Agr & Rural Affairs, Beijing 100097, Peoples R China
2.Henan Agr Univ, Coll Informat & Management Sci, Zhengzhou 450002, Peoples R China
3.Chinese Acad Agr Sci, Inst Crop Sci, Key Lab Crop Physiol & Ecol, Minist Agr, Beijing 100081, Peoples R China
关键词: Potato; Hierarchical linear model; Hyperspectral; Meteorological data; Biomass
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:7.7; 五年影响因子:8.4 )
ISSN: 0168-1699
年卷期: 2024 年 222 卷
页码:
收录情况: SCI
摘要: Above-ground biomass (AGB) is an important agronomic indicator that reflects crop growth and estimates yield. The AGB estimation using remote sensing becomes a non-destructive, rapid, and alternative method to postharvest laboratory measurements. However, most of the AGB estimation models constructed based on remote sensing data are difficult to expand regionally, which limits the applicability of the models. This study combined ground-based hyperspectral and meteorological data by using a hierarchical linear modeling (HLM) to construct an AGB estimation model that was generalized across different regions. Experimental data from both regions were acquired and validated, namely from Xiaotangshan Experimental Base, Beijing, 2019 (North China) and Keshan Farm, Qiqihar Branch, Heilongjiang General Bureau of Reclamation, 2022 (Northeast China). Compared to OLS, RFR and GRU, the HLM method was better for estimating potato AGB in different regions with R 2 = 0.54, RMSE = 429.62 kg/hm 2 , NRMSE = 28.20 %. The results of this study demonstrated that HLM could be used as a powerful method to improve the transferability of AGB estimation at different regions.
- 相关文献
作者其他论文 更多>>
-
Recognition of wheat rusts in a field environment based on improved DenseNet
作者:Chang, Shenglong;Cheng, Jinpeng;Fan, Zehua;Ma, Xinming;Li, Yong;Zhao, Chunjiang;Chang, Shenglong;Yang, Guijun;Cheng, Jinpeng;Fan, Zehua;Yang, Xiaodong;Zhao, Chunjiang
关键词:Plant disease; Wheat rust; Image processing; Deep learning; Computer vision (CV); DenseNet
-
Automatic Rice Early-Season Mapping Based on Simple Non-Iterative Clustering and Multi-Source Remote Sensing Images
作者:Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Wang, Gengze;Chen, Riqiang;Yang, Guijun;Feng, Haikuan;Meng, Di;Jin, Hailiang;Ge, Xiaosan;Wang, Laigang;Feng, Haikuan
关键词:early-season rice mapping; spectral index (SI); synthetic aperture radar (SAR); Simple Non-Iterative Clustering (SNIC); time series filtering; K-Means; Jeffries-Matusita (JM) distance
-
Plant-based proteins: advances in their sources, digestive profiles in vitro and potential health benefits
作者:Li, Mengzhuo;Qin, Peiyou;Zou, Liang;Qin, Peiyou;Zhang, Lizhen;Ren, Guixing;Liu, Yang;Zhao, Xiaoyan;Qin, Peiyou
关键词:Plant-based proteins; protein sources; in vitro digestion; processing; health benefits
-
Effects of Environmental Hypoxia on Serum Hematological and Biochemical Parameters, Hypoxia-Inducible Factor (hif) Gene Expression and HIF Pathway in Hybrid Sturgeon (Acipenser schrenckii ♂ x Acipenser baerii ♀)
作者:Ren, Yuanyuan;Cheng, Bo;Ren, Yuanyuan;Tian, Yuan;Liu, Yang;Yu, Huanhuan
关键词:hypoxia; physiological response; hypoxia-induced factor; HIF pathway; hybrid sturgeon
-
Comparison of three models for winter wheat yield prediction based on UAV hyperspectral images
作者:Xu, Xiaobin;Teng, Cong;Zhu, Hongchun;Li, Zhenhai;Teng, Cong;Feng, Haikuan;Zhao, Yu
关键词:hyperspectral imagery; unmanned aerial vehicle; winter wheat; yield prediction model; remote sensing
-
A Two-Stage Leaf-Stem Separation Model for Maize With High Planting Density With Terrestrial, Backpack, and UAV-Based Laser Scanning
作者:Lei, Lei;Lei, Lei;Li, Zhenhong;Li, Zhenhong;Yang, Hao;Xu, Bo;Yang, Guijun;Hoey, Trevor B.;Wu, Jintao;Yang, Xiaodong;Feng, Haikuan;Yang, Guijun;Yang, Guijun
关键词:Vegetation mapping; Laser radar; Point cloud compression; Feature extraction; Agriculture; Data models; Data mining; Different cultivars; different growth stages; different planting densities; different platforms; light detection and ranging (LiDAR) data; simulated datasets; two-stage leaf-stem separation model
-
Remote sensing of quality traits in cereal and arable production systems: A review
作者:Li, Zhenhai;Fan, Chengzhi;Li, Zhenhai;Zhao, Yu;Song, Xiaoyu;Yang, Guijun;Jin, Xiuliang;Casa, Raffaele;Huang, Wenjiang;Blasch, Gerald;Taylor, James;Li, Zhenhong
关键词:Remote sensing; Quality traits; Grain protein; Cereal