您好,欢迎访问江苏省农业科学院 机构知识库!

GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety

文献类型: 外文期刊

作者: Zhou, Yong 1 ; Tao, Yajun 1 ; Zhu, Jinyan; Miao, Jun 1 ; Liu, Jun 1 ; Liu, Yanhua 1 ; Yi, Chuandeng 2 ; Yang, Zefeng;

作者机构: 1.Yangzhou Univ, Jiangsu Key Lab Crop Genet & Physiol, Coinnovat Ctr Modern Prod Technol Grain Crops, Key Lab Plant Funct Genom,Minist Educ, Yangzhou 225009, Jiangsu, Peoples R China

2.Yangzhou Univ, Jiangsu Key Lab Crop Genet & Physiol, Coinnovat Ctr Modern Prod Technol Grain Crops, Key Lab Plant

关键词: Rice;GNS4/D11;Grain number;Grain size;Cell elongation

期刊名称:RICE ( 影响因子:4.783; 五年影响因子:5.23 )

ISSN: 1939-8425

年卷期: 2017 年 10 卷

页码:

收录情况: SCI

摘要: Background: Rice plays an extremely important role in food safety because it feeds more than half of the world's population. Rice grain yield depends on biomass and the harvest index. An important strategy to break through the rice grain yield ceiling is to increase the biological yield. Therefore, genes associated with organ size are important targets for rice breeding. Results: We characterized a rice mutant gns4 (grain number and size on chromosome 4) with reduced organ size, fewer grains per panicle, and smaller grains compared with those of WT. Map-based cloning indicated that the GNS4 gene, encoding a cytochrome P450 protein, is a novel allele of DWARF11 (D11). A single nucleotide polymorphism (deletion) in the promoter region of GNS4 reduced its expression level in the mutant, leading to reduced grain number and smaller grains. Morphological and cellular analyses suggested that GNS4 positively regulates grain size by promoting cell elongation. Overexpression of GNS4 significantly increased organ size, 1000-grain weight, and panicle size, and subsequently enhanced grain yields in both the Nipponbare and Wuyunjing7 (a high-yielding cultivar) backgrounds. These results suggest that GNS4 is key target gene with possible applications in rice yield breeding. Conclusion: GNS4 was identified as a positive regulator of grain number and grain size in rice. Increasing the expression level of this gene in a high-yielding rice variety enhanced grain yield. GNS4 can be targeted in breeding programs to increase yields.

  • 相关文献

[1]Natural Variations in SLG7 Regulate Grain Shape in Rice. Miao, Jun,Peng, Xiurong,Leburu, Mamotshewa,Yuan, Fuhai,Gu, Houwen,Gao, Yun,Tao, Yajun,Gong, Zhiyun,Yi, Chuandeng,Gu, Minghong,Yang, Zefeng,Liang, Guohua,Gu, Haiyong,Zhu, Jinyan.

[2]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[3]Haplotypes of qGL3 and their roles in grain size regulation with GS3 alleles in rice. Zhang, Y. D.,Zhu, Z.,Zhao, Q. Y.,Chen, T.,Yao, S.,Zhou, L. H.,Zhao, L.,Zhao, C. F.,Wang, C. L.,Zhang, Y. D.,Zhao, Q. Y.,Wang, C. L.. 2016

[4]Practice and thoughts on developing hybrid rice for super high yield by exploiting intersubspecific heterosis. Zou Jiang-shi,Lu Chuan-gen. 2009

[5]Correlation between appearance of embryogenic cells and the IAA levels in rice somatic cell culture. Chen, YF,Zhou, X,Tang, RS,Zhang, JY,Mei, CS. 1998

[6]Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng, Xiaoxi,Lv, Yuanda,Mujahid, Hana,Peng, Zhaohua,Lv, Yuanda,Zhao, Han,Edelmann, Mariola J.,Peng, Xiaojun. 2018

[7]Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.). Zhou, Yong,Tao, Yajun,Tang, Dongnan,Zhong, Jun,Wang, Yi,Yuan, Qiumei,Yu, Xiaofeng,Zhang, Yan,Wang, Yulong,Liang, Guohua,Dong, Guichun,Wang, Jun. 2017

[8]Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Zhu, Su-Qin,Yu, Chun-Mei,Liu, Xin-Yan,Ji, Ben-Hua,Jiao, De-Mao. 2007

[9]Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Li, Wenqi,Yang, Jie,Zhong, Weigong,Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Okada, Kazunori,Yamane, Hisakazu. 2013

[10]Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana, R. M.,Dong, S.,Huang, J.,Zhang, H. S.,Rana, R. M.,Ali, Z.,Ali, Z.. 2012

[11]Morphology and photosynthetic enzyme activity of maize phosphoenolpyruvate carboxylase transgenic rice. Li, W. C.,Wang, J.,Sun, Y. L.,Ji, S. D.,Guo, S. W.. 2015

[12]Identification of an active Mutator-like element (MULE) in rice (Oryza sativa). Gao, Dongying,Gao, Dongying. 2012

[13]Verification and evaluation of grain QTLs using RILs from TD70 x Kasalath in rice. Zhang, Y. D.,Liang, Y. L.,Wang, C. L.,Zhang, Y. D.,Zheng, J.,Wang, C. L.,Liang, Z. K.,Peng, Z. H.. 2015

[14]Rice growth monitoring using simulated compact polarimetric C band SAR. Yang, Zhi,Li, Kun,Liu, Long,Shao, Yun,Yang, Zhi,Liu, Long,Brisco, Brian,Li, Weiguo. 2014

[15]Simulating the optimal growing season of rice in the Yangtze River Valley and its adjacent area, China. Huang, Y,Gao, LZ,Jin, ZQ,Chen, H. 1998

[16]Physiological basis of photosynthetic tolerance to photooxidation and shading in rice. Li, X,Jiao, DM. 2000

[17]Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Chen, Jianping,Dong, Yan,Yang, Yong,Wang, Xuming,Yu, Chulang,Zhou, Jie,Yan, Chengqi,Chen, Jianping,Fang, Xianping,Fang, Xianping,Xue, Gang-Ping,Chen, Xian,Zhang, Weilin,Mei, Qiong,Fang, Wang. 2017

[18]Genetic and molecular analysis of a purple sheath somaclonal mutant in japonica rice. Gao, Dongying,He, Bing,Sun, Lihua,Zhou, Yihong. 2011

[19]Performance and Analysis of a Model for Describing Layered Leaf Area Index of Rice. Lue Chuan-gen,Yao Ke-min,Hu Ning. 2011

[20]High/low nitrogen adapted hybrid of rice cultivars and their physiological responses. Li Xia,Sun Zhiwei,Jin Lei,Han Lei,Ren Chenggang,Wang Man,Lu Chuangen. 2011

作者其他论文 更多>>