您好,欢迎访问江苏省农业科学院 机构知识库!

Identification of QTL Associated with Nitrogen Uptake and Nitrogen Use Efficiency Using High Throughput Genotyped CSSLs in Rice (Oryza sativa L.)

文献类型: 外文期刊

作者: Zhou, Yong 1 ; Tao, Yajun 1 ; Tang, Dongnan 1 ; Wang, Jun; Zhong, Jun 1 ; Wang, Yi 1 ; Yuan, Qiumei 1 ; Yu, Xiaofeng 2 ;

作者机构: 1.Yangzhou Univ, Jiangsu Key Lab Crop Genet & Physiol, Key Lab Plant Funct Genom, Coinnovat Ctr Modern Prod Technol Grain Crops,Min, Yangzhou, Jiangsu, Peoples R China

2.Yangzhou Univ, Jiangsu

关键词: rice;nitrogen uptake;nitrogen use efficiency;QTL mapping;CSSLs

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Nitrogen (N) availability is a major factor limiting crop growth and development. Identification of quantitative trait loci (QTL) for N uptake (NUP) and N use efficiency (NUE) can provide useful information regarding the genetic basis of these traits and their associated effects on yield production. In this study, a set of high throughput genotyped chromosome segment substitution lines (CSSLs) derived from a cross between recipient 9311 and donor Nipponbare were used to identify QTL for rice NUP and NUE. Using high throughput sequencing, each CSSL were genotyped and an ultra-high-quality physical map was constructed. A total of 13 QTL, seven for NUP and six for NUE, were identified in plants under hydroponic culture with all nutrients supplied in sufficient quantities. The proportion of phenotypic variation explained by these QTL for NUP and NUE ranged from 3.16-13.99% and 3.76-12.34%, respectively. We also identified several QTL for biomass yield (BY) and grain yield (GY), which were responsible for 3.21-45.54% and 6.28-7.31%, respectively, of observed phenotypic variation. GY were significantly positively correlated with NUP and NUE, with NUP more closely correlated than NUE. Our results contribute information to NUP and NUE improvement in rice.

  • 相关文献

[1]Effects of the fungal endophyte Phomopsis liquidambari on nitrogen uptake and metabolism in rice. Yang, Bo,Wang, Xiao-Mi,Ma, Hai-Yan,Jia, Yong,Dai, Chuan-Chao,Li, Xia.

[2]Maintaining yields and reducing nitrogen loss in rice-wheat rotation system in Taihu Lake region with proper fertilizer management. Xue, Lihong,Yu, Yingliang,Yang, Linzhang. 2014

[3]Evaluation of the yield and nitrogen use efficiency of the dominant maize hybrids grown in North and Northeast China. Chen FanJun,Yuan LiXing,Mi GuoHua,Zhang FuSuo,Fang ZenGuo,Gao Qiang,Ye YouLiang,Jia LiangLiang. 2013

[4]NURSERY-BOX TOTAL FERTILIZATION TECHNOLOGY ( NBTF) APPLICATION FOR INCREASING NITROGEN USE EFFICIENCY IN CHINESE IRRIGATED RICELAND: N-SOIL INTERACTIONS. Gao, Ji,Chen, Zhe,Yang, Shiqi,Yang, Zhengli,Zhang, Qingwen,Liu, Ruliang,Shao, Hongbo,Shao, Hongbo,Yoshikazu, Nagai.

[5]EFFECT OF NITROGEN MANAGEMENT ON PRODUCTIVITY, NITROGEN USE EFFICIENCY AND NITROGEN BALANCE FOR A WHEAT-MAIZE SYSTEM. Sha, Zhimin,Yao, Dongwei,Zhou, Wei,He, Ping,Xing, Suli. 2013

[6]Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Sun, Haijun,Sun, Haijun,Min, Ju,Feng, Yanfang,Shi, Weiming,Zhang, Hailin,Feng, Yanfang.

[7]A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Bai, Gui-Hua,Chen, Cui-Xia,Cai, Shi-Bin,Cai, Shi-Bin. 2008

[8]Quantitative trait loci for Aluminum resistance in wheat cultivar Chinese Spring. Ma, Hong-Xiang,Bai, Gui-Hua,Lu, Wei-Zhong. 2006

[9]Quantitative Trait Loci Associated with Drought Tolerance in Brachypodium distachyon. Jiang, Yiwei,Pei, Zhongyou,Liu, Huifen,Jiang, Yiwei,Zhao, Xiongwei,Wang, Xicheng,Yu, Xiaoqing,Zhao, Xiongwei,Luo, Na,Garvin, David F.,Garvin, David F.. 2017

[10]Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Wang, Jianfei,Huang, Ji,Lan, Hongxia,Yin, Congfei,Wu, Yunyu,Tang, Haijuan,Zhang, Hongsheng,Wang, Cailin,Qian, Qian,Li, Jiayang,Li, Jiayang.

[11]Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Dai, Jian,Dai, Jian,Bai, Guihua,Zhang, Dadong,Dai, Jian,Hong, Delin. 2013

[12]Identification of novel quantitative trait loci for resistance to Fusarium seedling blight caused by Microdochium majus and M. nivale in wheat. Ren, Runsheng,Yang, Xingping,Ren, Runsheng,Foulkes, John,Mayes, Sean,Ray, Rumiana V..

[13]Different genes can be responsible for crown rot resistance at different developmental stages of wheat and barley. Yang, Xueming,Ma, Jun,Li, Haobing,Liu, Chunji,Yang, Xueming,Ma, Hongxiang,Yao, Jinbao,Ma, Jun,Liu, Chunji.

[14]Practice and thoughts on developing hybrid rice for super high yield by exploiting intersubspecific heterosis. Zou Jiang-shi,Lu Chuan-gen. 2009

[15]Functional Marker Development and Effect Analysis of Grain Size Gene GW2 in Extreme Grain Size Germplasm in Rice. Zhang Ya-dong,Zheng Jia,Liang Yan-li,Zhao Chun-fang,Chen Tao,Zhao Qing-yong,Zhu Zhen,Zhou Li-hui,Yao Shu,Zhao Ling,Yu Xing,Wang Cai-lin. 2015

[16]Correlation between appearance of embryogenic cells and the IAA levels in rice somatic cell culture. Chen, YF,Zhou, X,Tang, RS,Zhang, JY,Mei, CS. 1998

[17]Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Meng, Xiaoxi,Lv, Yuanda,Mujahid, Hana,Peng, Zhaohua,Lv, Yuanda,Zhao, Han,Edelmann, Mariola J.,Peng, Xiaojun. 2018

[18]Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice. Zhu, Su-Qin,Yu, Chun-Mei,Liu, Xin-Yan,Ji, Ben-Hua,Jiao, De-Mao. 2007

[19]Oscyp71Z2 involves diterpenoid phytoalexin biosynthesis that contributes to bacterial blight resistance in rice. Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Li, Wenqi,Yang, Jie,Zhong, Weigong,Li, Wenqi,Shao, Min,Qian, Guoliang,Liu, Fengquan,Okada, Kazunori,Yamane, Hisakazu. 2013

[20]Regulation of ATG6/Beclin-1 homologs by abiotic stresses and hormones in rice (Oryza sativa L.). Rana, R. M.,Dong, S.,Huang, J.,Zhang, H. S.,Rana, R. M.,Ali, Z.,Ali, Z.. 2012

作者其他论文 更多>>