您好,欢迎访问江苏省农业科学院 机构知识库!

Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus

文献类型: 外文期刊

作者: Wang, Xiaodong 1 ; Chen, Li 1 ; Wang, Aina 4 ; Wang, Hao 5 ; Tian, Jianhua; Zhao, Xiaoping; Chao, Hongbo 1 ; Zhao, 1 ;

作者机构: 1.Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Dept Biotechnol, Wuhan 430074, Peoples R China

2.Jiangsu Acad Agr Sci, Inst Ind Crops, Minist Agr, Prov Key Lab Agrobiol,Key Lab Cotton & Rapeseed, Nanjing 210014, Jiangsu, Peoples R China

3.Huanggang Normal Univ, Hubei Collaborat Innovat Ctr Characterist Resourc, Huanggang 438000, Peoples R China

4.Natl Ctr Oil Crops Genet Improvement, Shaanxi Rapeseed Branch, Hybrid Rapeseed Res Ctr Shaanxi Prov, Yangling 712100, Peoples R China

5.Natl Ctr Oil

关键词: Brassica napus;Silique traits;QTL;Comparative mapping;Candidate genes

期刊名称:BMC PLANT BIOLOGY ( 影响因子:4.215; 五年影响因子:4.96 )

ISSN: 1471-2229

年卷期: 2016 年 16 卷

页码:

收录情况: SCI

摘要: Background: Yield of rapeseed is determined by three components: silique number, seed number per silique and thousand seed weight. Seed number per silique and thousand seed weight are influenced by silique length, seed density, silique breadth, silique thickness and silique volume. Some QTLs for silique traits have been reported in B. napus, however, no studies have focused on the six agronomic traits (seed number per silique, silique length, silique breadth, silique thickness, seed density and silique volume) simultaneously, and the genetic determinism of such complex traits have not been fully elucidated. Results: In this study, the six silique traits were evaluated using 348 lines of a doubled haploid population, the KN population. The results showed that 2, 4, 1, 1 and 2 QTLs explaining > 10 % of phenotypic variation were obtained for silique length, silique breadth, silique thickness, seed number per silique and silique volume, respectively. Notably, three major effect QTLs (cqSB-C6-1, cqSB-C6-2 and cqSV-C6-3) were identified in at least three environments, and 17 unique QTLs controlling at least two traits were obtained. A high-density consensus map containing 1225 markers was constructed for QTL comparison by combining the KN map with other five published maps. The comparative results revealed that 14, 13 and 11 QTLs for silique breadth, silique thickness and silique volume might be the potential new QTLs because few QTLs for these traits were reported in B. napus. In addition, potential new QTLs for silique length (11), seed number per silique (6) and seed density (5) were also identified. Twenty-five candidate genes underlying 27 QTLs for silique related traits were obtained. Conclusions: This study constructed QTL analysis in B. napus, and obtained 60 consensus QTLs for six silique related traits. The potential new QTLs will enhance our understanding of the genetic control of silique traits, and the stable QTLs provided the targets for improving seed yield in future. These findings provided comprehensive insights into the genetic network affecting silique traits at QTL level in B. napus.

  • 相关文献

[1]Genome-Wide Identification of QTL for Seed Yield and Yield-Related Traits and Construction of a High-Density Consensus Map for QTL Comparison in Brassica napus. Zhao, Weiguo,Wang, Hao,Tian, Jianhua,Li, Baojun,Zhao, Weiguo,Wang, Hao,Chen, Li,Chao, Hongbo,Li, Maoteng,Wang, Xiaodong,Long, Yan,Xiang, Jun,Gan, Jianping,Li, Maoteng,Liang, Wusheng. 2016

[2]New insights into the genetic networks affecting seed fatty acid concentrations in Brassica napus. Wang, Xiaodong,Yin, Yongtai,Gan, Lu,Yu, Longjiang,Li, Maoteng,Long, Yan,Zhang, Chunyu,Meng, Jinling,Long, Yan,Wang, Xiaodong,Liu, Liezhao. 2015

[3]小麦赤霉病抗性分子标记研究. 张旭,任丽娟,周淼平,高力,沈晓蓉,向阳海,马鸿翔,陆维忠. 2005

[4]Genetic linkage map of Lolium multiflorum Lam. constructed from a BC1 population derived from an interspecific hybridization, L. multiflorum x Lolium temulentum L. x L. temulentum. Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Guan, Xuanli,Tan, Lubin,Fu, Yongcai,Cai, Hongwei,Hirata, Mariko,Yuyama, Nana,Cai, Hongwei,Ding, Chenglong,Xu, Nengxiang,Tan, Lubin,Wang, Jianping.

[5]Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton. Kumar, Pawan,He, Yajun,Singh, Rippy,Shen, Xinlian,Chee, Peng W.,Davis, Richard F.,Guo, Hui,Paterson, Andrew H.,Peterson, Daniel G.,Nichols, Robert L.,Shen, Xinlian,He, Yajun. 2016

[6]STUDY ON APETALOUS BREEDING IN RAPESEED (Brassica napus). Fu Shouzhong,Qi Cunkou,Pu Huiming,Zhang Jiefu. 2001

[7]Cytology of multisomic addition line "NJ04-8089" in Brassica napus L.. YUAN Shifeng,QI Cunkou. 2007

[8]Breeding of apetalous and dwarfish line APL03(Brassica napus). FU Shouzhong,ZHANG Jiefu,QI Cunkou,PU Huiming,GAO Jianqin,CHEN Xinjun. 2007

[9]Morphological Structure and Transcriptome Comparison of the Cytoplasmic Male Sterility Line in Brassica napus (SaNa-1A) Derived from Somatic Hybridization and Its Maintainer Line SaNa-1B. Du, Kun,Liu, Qier,Wu, Xinyue,Jiang, Jinjin,Wu, Jian,Fang, Yujie,Wang, Youping,Li, Aimin. 2016

[10]Cytogenetics and germplasm enrichment in Brassica allopolyploids in China. Li Zai-yun,Wang You-ping,Wang You-ping. 2017

[11]Phenotypic characterization and genetic analysis of a partially female-sterile mutant in Brassica napus. Li, Chun-Hong,Fu, San-Xiong,Chen, Xin-Jun,Qi, Cun-Kou. 2012

[12]Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). Xu, Liping,Hu, Kaining,Wen, Jing,Yi, Bin,Shen, Jinxiong,Ma, Chaozhi,Tu, Jinxing,Fu, Tingdong,Zhang, Zhenqian,Guan, Chunyun,Chen, Song,Hua, Wei,Li, Jiana.

[13]The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype. Hu, Qiong,Tong, Chaobo,Huang, Shunmou,Yu, Jingyin,Mei, Desheng,Shi, Jiaqin,Wang, Xinfa,Hu, Zhiyong,Dong, Caihua,Li, Jun,Liu, Shengyi,Hua, Wei,Wang, Hanzhong,Fan, Guangyi,Liu, Weiqing,Chen, Wenbin,Zeng, Peng,Wang, Xi,Liang, Xinming,Huang, Guodong,Zhang, He,Zhang, Yaolei,Li, Liangwei,Shi, Chengcheng,Wang, Jiahao,Xu, Xun,Liu, Xin,Zhou, Yongming,Meng, Jinling,Liu, Kede,Long, Yan,Guan, Mei,Guan, Chunyun,Chalhoub, Boulos,Li, Jiana,Du, Dezhi,Qi, Cunkou,Jiang, Liangcai,Fan, Guangyi,Liu, Xin,Fan, Guangyi,Lee, Simon Ming-Yuen,Fan, Guangyi,Lee, Simon Ming-Yuen.

[14]Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Fang, Yujie,Li, Jian,Jiang, Jinjin,Geng, Yulu,Wang, Jinglei,Wang, Youping,Fang, Yujie.

[15]Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Fu, San-Xiong,Qi, Cunkou,Cheng, Hao.

[16]DISTRIBUTION OF SEVEN GRAIN GENES AND EVALUATION OF THEIR GENETIC EFFECTS ON GRAIN TRAITS. Zhang, Yadong,Zhao, Qingyong,Zhao, Chunfang,Chen, Tao,Zhu, Zhen,Zhou, Lihui,Yao, Shu,Zhao, Ling,Wang, Cailin. 2016

[17]Analysis of QTLs for panicle exsertion and its relationship with yield and yield-related traits in rice (Oryza sativa L.). Zhao, C. F.,Chen, T.,Zhao, Q. Y.,Zhou, L. H.,Zhao, L.,Zhang, Y. D.,Zhu, Z.,Yao, S.,Wang, C. L.. 2016

[18]Quantitative trait loci for resistance to Sharp Eyespot (Rhizoctonia cerealis) in recombinant inbred wheat lines from the cross Niavt 14 x Xuzhou 25. Jiang, Yanjie,Zhu, Fangfang,Cai, Shibin,Wu, Jizhong,Zhang, Qiaofeng. 2016

[19]QTL mapping for seedling traits associated with low-nitrogen tolerance using a set of advanced backcross introgression lines of rice. Zhao, Chun-fang,Zhou, Li-hui,Zhang, Ya-dong,Zhu, Zhen,Chen, Tao,Zhao, Qing-yong,Yao, Shu,Yu, Xin,Wang, Cai-lin. 2014

[20]Construction of a linkage map for quantitative trait loci associated with economically important traits in creeping bentgrass (Agrostis stolonifera L.). Zhang, Tifu,Ge, Min,Ye, Xiaoqing,Zhao, Han,Bughrara, Suleiman S..

作者其他论文 更多>>