文献类型: 外文期刊
作者: Cao, Hongxin 1 ; Liu, Yan 1 ; Zhang, Wenyu 1 ; Zhu, Yeping 2 ; Ge, Daokuo 1 ; Yue, Yanbin 3 ; Liu, Yongxia; Sun, Jinyi 1 ;
作者机构: 1.Jiangsu Acad Agr Sci, Engn Res Ctr Digital Agr, Inst Agr Econ & Informat, Nanjing 210014, Jiangsu, Peoples R China
2.China Acad Agr Sci, Inst Agr Informat, Beijing 100081, Peoples R China
3.Guizhou Acad Agr Sci, In
关键词: nitrogen impact;rapeseed (Brassica napus L.);phenology models;leaf number models;revising
期刊名称:Computer and Computing Technologies in Agriculture VIII
ISSN: 1868-4238
年卷期: 2015 年 452 卷
页码:
收录情况: SCI
摘要: The Decision-making System for Rapeseed Optimization-Digital Cultivation Based on Simulation Models, DSRODCBSM, is a dynamic model that describes the growth and development of winter rapeseed. In order to perfect rapeseed growth models, Ningyou16 (NY16), Ningyou 18 (NY18), and Ningza 19 (NZ19) were adopted as materials, and the field experiments with 2 cultivars and 2 nitrogen levels, and pot experiment with 3 cultivars and 2 nitrogen levels were conducted during 2007-2008, 2008-2009, and 2011-2012 in Nanjing, respectively. The experimental results showed that the phenology and leaf number in rapeseed models had obvious difference for the same cultivars under different nitrogen levels. Thus, the nitrogen effect factor, F (N), was put forward, used in the phenology sub-model in rapeseed growth models, and the verification of the leaf number sub-model can be done through model parameter adjusting. The simulated values before and after using F (N) and the observed values were compared, and the precision for the phenology sub- models in rapeseed growth models were raised further.
- 相关文献
作者其他论文 更多>>
-
Integrated Analysis of Metatranscriptome and Amplicon Sequencing to Reveal Distinctive Rhizospheric Microorganisms of Salt-Tolerant Rice
作者:Meng, Wenna;Tan, Mingpu;Liu, Anqi;Liu, Shuai;Wang, Jiaxue;Deng, Yanming;Zhou, Zhenling;Sun, Zhiguang;Tan, Yiluo;Liu, Yan;Wang, Baoxiang;Deng, Yanming
关键词:metatranscriptome; plant-microbe interaction; salt tolerance; rice
-
Identification of QTLs and a candidate gene affecting rice grain volume via high-density genetic mapping
作者:Sun, Zhiguang;Li, Jingfang;Li, Jian;Yang, Bo;Liu, Jinbo;Chen, Tingmu;Zhang, Yuqin;Lu, Baiguan;Liu, Yan;Wang, Baoxiang;Xu, Dayong;An, Hongzhou;Qiu, Zeyu
关键词:weedy rice; grain volume; QTL; high-density genetic map; ethylene receptor
-
Quantitative assessment of heat tolerance in new rice varieties through field survey during natural extreme heat events
作者:Sun, Ting;Hu, Jianan;Zhou, Haoyang;Li, Minglu;Zhang, Jiayi;Pan, Yuanyuan;Bi, Ran;Ye, Shenghao;Wei, Menglei;Wu, Zeyu;Cao, Jing;Zhang, Wenyu;Miao, Tianhui;Zhou, Haoyang;Li, Minglu;Li, Guoqiang;Yang, Wuguang;Fang, Pingping;Zhang, Wenyu
关键词:Heat stress; Sterility; Temperature threshold; Heading distribution
-
A panomics-driven framework for the improvement of major food legume crops: advances, challenges, and future prospects
作者:Hu, Hongliang;Xu, Pei;Yuan, Xingxing;Wu, Ranran;Saini, Dinesh Kumar;Yang, Tao;Liu, Zehao;Wu, Xinyi;Jan, Farkhandah;Mir, Reyazul Rouf;Liu, Liu;Miao, Jiashun;Liu, Na;Liu, Na
关键词:
-
Characterization of Quantitative Trait Loci for Fusarium Head Blight Resistance and Agronomic Traits in Wheat Cultivar 'Jagger' and Its Mutant 'JagR1097'
作者:Xu, Yuzhou;Liu, Na;Zhao, Lanfei;Lin, Xiaomao;Bai, Guihua;Xu, Yuzhou;Xu, Xuan;Liu, Na;Liu, Yang;Zhao, Lanfei;Zhang, Lirong;La, Guixiao;Liu, Dongtao;Su, Zhenqi;Bernardo, Amy;St Amand, Paul;Bai, Guihua;Cai, Jin
关键词:agronomic traits; FHB resistance; GBS; KASP markers; QTL; SNP; wheat
-
Virus detection light diffraction fingerprints for biological applications
作者:Li, Tongge;Yang, Ning;Wang, Shihui;Jiang, Feiyang;Zhang, Zhaoyuan;Xiao, Yi;Liu, Yan;Zhang, Xingcai;Pan, Xiaoqing
关键词:
-
Mapping rapeseed (Brassica napus L.) aboveground biomass in different periods using optical and phenotypic metrics derived from UAV hyperspectral and RGB imagery
作者:Sun, Chuanliang;Zhang, Weixin;Wu, Qian;Liang, Wanjie;Ren, Ni;Cao, Hongxin;Sun, Chuanliang;Zhao, Genping;Zou, Lidong;Zou, Lidong
关键词:rapeseed (
Brassica napus L. ); aboveground biomass (AGB); phenotypic metrics; hyperspectral images (HSI); machine learning approach



