您好,欢迎访问江苏省农业科学院 机构知识库!

Potassium contributes to zinc stress tolerance in peach (Prunus persica) seedlings by enhancing photosynthesis and the antioxidant defense system

文献类型: 外文期刊

作者: Song, Z. Z. 1 ; Duan, C. L. 3 ; Guo, S. L. 1 ; Yang, Y. 1 ; Feng, Y. F. 4 ; Ma, R. J. 1 ; Yu, M. L. 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Hort, Nanjing, Jiangsu, Peoples R China

2.Jiangsu Key Lab Hort Crop Genet Improvement, Nanjing, Jiangsu, Peoples R China

3.Jiangsu Prov Fishery Tech Extending Ctr, Nanjing, Jiangsu, Peoples R China

4.Jiangsu Acad Agr Sci, Inst Agr Resources & Environm, Nanjing, Jiangsu, Peoples R China

关键词: Potassium;Photosynthesis;Antioxidant defense system;Peach;Zinc stress

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2015 年 14 卷 3 期

页码:

收录情况: SCI

摘要: Zinc (Zn) is considered to be a major industrial pollutant because excessive amounts can impair plant growth. In this paper, we found that peach 'Yoshihime' seedlings are promising Zn tolerant plants. However, heavy Zn toxicity (2 mM) damaged plant performance by disrupting biochemical processes, including photosynthesis, proline production, and K+ nutrition. Notably, elevated external K+ supply (10 mM) alleviated peach seedlings from Zn toxicity, evidenced by enhanced photosynthesis, antioxidant defense systems, and plant K+ nutritional status. Moreover, the transcript levels of KUP (K+ uptake) genes involved in K+ acquisition, transport, and homeostasis were significantly upregulated following supply of sufficient K+ upon Zn toxicity. In general, K+ favorably contributes to improvements in internal K+ homeostasis, via the help of K+ transporters, further protecting plant photosynthesis and the antioxidative defense system. Our findings further benefit the study of the mechanisms underpinning heavy metal tolerance in woody plants.

  • 相关文献

[1]KT/HAK/KUP potassium transporter genes differentially expressed during fruit development, ripening, and postharvest shelf-life of 'Xiahui6' peaches. Song, Zhizhong,Guo, Shaolei,Zhang, Chunhua,Zhang, Binbin,Ma, Ruijuan,Yu, Mingliang,Song, Zhizhong,Guo, Shaolei,Zhang, Chunhua,Zhang, Binbin,Ma, Ruijuan,Yu, Mingliang,Korir, Nicholas Kibet.

[2]叶面喷施不同浓度ABA对美香桃果实品质的影晌. 许建兰,马瑞娟,张斌斌,倪林箭. 2012

[3]Effects of microcystin-LR, linear alkylbenzene sulfonate and their mixture on lettuce (Lactuca sativa L.) seeds and seedlings. Wang, Zhi,Xiao, Bangding,Song, Lirong,Wu, Xingqiang,Zhang, Junqian,Wang, Chunbo,Wang, Zhi,Zhang, Junqian,Wu, Xingqiang. 2011

[4]Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia. Colmer, TD,Huang, SB,Greenway, H. 2001

[5]Effect of Application Ratio of Potassium over Nitrogen on Litchi Growth and Fruit Quality. Li, G. L.,Yang, B. M.,He, Z. H.,Zhou, C. M.,Tu, S. H.. 2014

[6]Effects of potassium fertilization on winter wheat under different production practices in the North China Plain. Zhang, Xiying,Zhang, Weifeng,Chen, Xinping,Zhang, Fusuo,Ru, Shuhua,Xiao, Kai,Assaraf, Menachem,Imas, Patricia,Magen, Hillel. 2013

[7]HETEROLOGOUS EXPRESSION OF AN ALLIGATORWEED HIGH-AFFINITY POTASSIUM TRANSPORTER GENE ENHANCES SALINITY TOLERANCE IN ARABIDOPSIS THALIANA. Song, Zhizhong,Yang, Shunying,Jin, Man,Su, Yanhua,Song, Zhizhong,Yang, Shunying,Jin, Man,Zhu, Hong,Zhu, Hong. 2014

[8]Intraspecific variation in potassium uptake and utilization among sweet potato (Ipomoea batatas L.) genotypes. Wang, Ji Dong,Wang, Ji Dong,Wang, Huoyan,Zhou, Jianmin,Chen, Xiaoqin,Wang, Ji Dong,Zhang, Yunchun.

[9]Potassium partitioning and redistribution as a function of K-use efficiency under K deficiency in sweet potato (Ipomoea batatas L.). Wang, Ji Dong,Hou, Pengfu,Dong, Yue,Hui, Zhang,Ma, Hongbo,Xu, Xian Ju,Nin, Yunwang,Ai, Yuchun,Zhang, Yongchun,Zhu, Guo Peng.

[10]Genome-wide analysis of the homeodomain-leucine zipper (HD-ZIP) gene family in peach (Prunus persica). Zhang, C. H.,Ma, R. J.,Shen, Z. J.,Yu, M. L.,Sun, X.,Korir, N. K.. 2014

[11]Isolation and expression analysis of four HD-ZIP III family genes targeted by microRNA166 in peach. Zhang, C. H.,Zhang, B. B.,Ma, R. J.,Yu, M. L.,Guo, S. L.,Guo, L.. 2015

[12]An improved strategy based on RAPD markers efficiently identified 95 peach cultivars. Yu, M. L.,Ma, R. J.,Shen, Z. J.,Wang, W. Y.,Fang, G.,Wang, W. Y.,Fang, G.. 2012

[13]Diversity, population structure, and evolution of local peach cultivars in China identified by simple sequence repeats. Shen, Z. J.,Zhang, Z.,Shen, Z. J.,Ma, R. J.,Cai, Z. X.,Yu, M. L.. 2015

[14]Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica). Zhang, C. H.,Ma, R. J.,Guo, L.,Yu, M. L.,Shangguan, L. F.,Sun, X.,Tao, R.,Korir, N. K.. 2012

[15]Effects of exogenous salicylic acid on physiological traits and CBF gene expression in peach floral organs under freezing stress. Zhang, Binbin,Ma, Ruijuan,Guo, Lei,Song, Zhizhong,Yu, Mingliang. 2017

[16]Development of Ty1-copia retrotransposon-based SSAP molecular markers for the study of genetic diversity in peach. Jiao, Yun,Ma, Rui-juan,Shen, Zhi-jun,Yu, Ming-liang.

[17]Cloning and expression of genes related to the sucrose-metabolizing enzymes and carbohydrate changes in peach. Zhang, Chunhua,Shen, Zhijun,Ma, Ruijuan,Yu, Mingliang,Zhang, Yanping,Han, Jian,Korir, Nicholas Kibet.

[18]Genome-wide identification and expression analysis of beta-galactosidase family members during fruit softening of peach [Prunus persica (L.) Batsch]. Guo, Shaolei,Song, Juan,Zhang, Binbin,Jiang, Hang,Ma, Ruijuan,Yu, Mingliang,Guo, Shaolei,Jiang, Hang,Guo, Shaolei,Song, Juan,Zhang, Binbin,Jiang, Hang,Ma, Ruijuan,Yu, Mingliang. 2018

[19]Molecular markers linked to specific characteristics of Prunus persica (L.) batsch. Yu Mingliang,Ma Ruijuan,Shen Zhijun,Zhang Zhen. 2007

[20]Physiological and transcriptional responses in the iron-sulphur cluster assembly pathway under abiotic stress in peach (Prunus persica L.) seedlings. Song, Zhizhong,Yang, Yong,Xu, Jianlan,Ma, Ruijuan,Yu, Mingliang.

作者其他论文 更多>>