您好,欢迎访问江苏省农业科学院 机构知识库!

Cloning and Expression of Two Soluble Acid Invertase Gene Isoforms from Rhododendron

文献类型: 外文期刊

作者: He Lisi 1 ; Su Jiale 1 ; Liu Xiaoqing 1 ; Li Chang 1 ; Chen Shangping 1 ;

作者机构: 1.Jiangsu Acad Agr Sci, Inst Hort, Nanjing 210014, Jiangsu, Peoples R China

关键词: azalea;bioinformatics analysis;enzyme activity;Ericaceae;floral development;soluble sugar;transcriptional level

期刊名称:JOURNAL OF THE AMERICAN SOCIETY FOR HORTICULTURAL SCIENCE ( 影响因子:1.144; 五年影响因子:1.617 )

ISSN: 0003-1062

年卷期: 2014 年 139 卷 2 期

页码:

收录情况: SCI

摘要: Soluble acid invertase [SAI (Enzyme Commission 3.2.1.26)] plays an important role in catalyzing the hydrolysis of sucrose into hexoses and regulates floral development. Full-length cDNAs encoding RhSAI1 and RhSAI2 isoforms were cloned from Rhododendron hybrid 'Yuqilin' and they exhibited high amino acid sequence identity (89%) to each other. The protein sequences contain highly conserved motifs present in all SAIs, including the beta-fructosidase motif N-D-P-(D/N), a putative active site W-E-C-(I/V)-D, and R-D-P. The expression of RhSAI1 and RhSAI2 genes was under spatial and temporal control. Expression of both RhSAI1 and RhSAI2 genes was most abundant in stems, and expression was lowest in roots and leaves, respectively. The expression of RhSAI2 was significantly lower than that of RhSAI1 in all organs. During floral development, RhSAI1 was highly expressed at the earliest stage (Stage I), decreased until Stage III, and increased again at the terminal stage. The pattern of RhSAI2 expression was distinctly different, showing a continuous increase during floral development. Consistent with the levels of RhSAI1 expression, SAI activity decreased during floral development and was inversely correlated with the soluble sugar content. Abundant expression of RhSAI1 at the transcriptional level in addition to high SAI activity during the initial stages of floral development may play a vital role in supplying the energy needed for rapid cell division and growth of flowers.

  • 相关文献

[1]Promotion of the Growth and Quality of Chinese Cabbage by Application of Biogas Slurry of Water Hyacinth. Xue, Yanfeng,Shi, Zhiqi,Chen, Jian,Yan, Shaohua,Zheng, Jianchu. 2012

[2]Genome-wide identification and analysis of FK506-binding protein family gene family in strawberry (Fragaria x ananassa). Leng, Xiangpeng,Liu, Dan,Sun, Xin,Li, Yu,Mu, Qian,Zhu, Xudong,Li, Pengyu,Fang, Jinggui,Zhao, Mizhen. 2014

[3]Genome-Wide Identification and Analysis of the Type-B Authentic Response Regulator Gene Family in Peach (Prunus persica). Zeng, Jingjue,Zhu, Xudong,Haider, Muhammad S.,Zhang, Cheng,Wang, Chen,Wang, Xicheng.

[4]Effects of Bacterial-Feeding Nematodes and Glucose on Phenanthrene Removal by Pseudomonas putida. Jing Yongping,Li Yan,Zhang Yingpeng,Liu Ping,Sun Ming,Jing Yongping,Li Yan,Zhang Yingpeng,Jing Yongping,Liu Zhaohui,Luo, Jiafa. 2017

[5]Response of the enzymes to nitrogen applications in cotton fiber (Gossypium hirsutum L.) and their relationships with fiber strength. Wang YouHua,Feng Ying,Xu NaiYin,Chen BingLin,Ma RongHui,Zhou ZhiGuo,Xu NaiYin. 2009

[6]UFGT: The Key Enzyme Associated with the Petals Variegation in Japanese Apricot. Wu, Xinxin,Ni, Xiaopeng,Zhou, Yong,Gao, Zhihong,Wu, Xinxin,Gong, Qinghua. 2017

[7]Soil enzymes as indicators of saline soil fertility under various soil amendments. Zhang Xuechen,Yang Jingsong,Wang Xiangping,Shao Hongbo,Wang Xiuping,Shao Hongbo.

[8]Response of the Flag Leaves of a Super-Hybrid Rice Variety to Drought Stress during Grain Filling Period. Liu, S. H.,Chen, G. X.,Liu, S. H.,Yin, J. J.,Lu, C. G..

[9]Biochemistry and molecular characterisation of chlorpyrifos resistance in field strains of the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). He, Ming,He, Peng,Ai, Zhen-Xian,Jiang, Zi-Qiong,Long, Yu-Ning,Zhang, Yue-Liang.

[10]Identification of lysophospholipase protein from Spiroplasma eriocheiris and verification of its function. Zhu, Huanxi,Liu, Peng,Du, Jie,Wang, Jian,Jing, Yunting,Zhang, Jia,Gu, Wei,Wang, Wen,Meng, Qingguo,Zhu, Huanxi,Liu, Peng,Du, Jie,Wang, Jian,Jing, Yunting,Zhang, Jia,Gu, Wei,Wang, Wen,Meng, Qingguo,Zhu, Huanxi,Gu, Wei,Meng, Qingguo.

[11]Hybrid Rubisco of tomato large subunits and tobacco small subunits is functional in tobacco plants. Zhang, Xing-Hai,Webb, James,Huang, Yi-Hong,Lin, Li,Huang, Yi-Hong,Tang, Ri-Sheng,Liu, Aimin.

[12]Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development. Zhou, Zhiguo,Xu, Naiyin.

作者其他论文 更多>>