您好,欢迎访问江苏省农业科学院 机构知识库!

Dynamic Estimation of Water Hyacinth Area by Fusing Data from Satellite and GPS Sensors

文献类型: 外文期刊

作者: Sun, Ling 1 ; Zhu, Zesheng 2 ;

作者机构: 1.JiangSu Acad Agr Sci, Nanjing 210014, Peoples R China

2.Naval Command Coll, Nanjing 210016, Peoples R China

关键词: Water hyacinth;Satellite and GPS sensors;Multi-sensor fusion;Area growth model

期刊名称:SENSORS, MECHATRONICS AND AUTOMATION

ISSN: 1660-9336

年卷期: 2014 年 511-512 卷

页码:

收录情况: SCI

摘要: The interaction of water hyacinth area with growth is known to be strongly influenced by area size, but little is known about the interdependent role that size and time have on dynamic estimation of water hyacinth area. We report on the fusion of specially designed, satellite and GPS sensor data into area growth model as a function of area and time. We employ a multi-sensor fusion technique that is able to generate uniform data of fitting area growth model with complete control of area and time. Evidence of an overall Goodness of Fit Index of 0.9753 was obtained by using conventional statistic analysis. These findings suggest that the multi-sensor fusion technique readily supports area growth model development with highly resolution. Moreover, it was found that area growth model enjoy an appreciable advantage when it comes to harvesting water hyacinth.

  • 相关文献

[1]An Area Growth Model of Eichhornia Crassipes with Application to Lake Ecosystem Restoration. Sun, Ling,Zhu, Zesheng. 2014

[2]Characteristics of Bacterial Communities in Cyanobacteria-Blooming Aquaculture Wastewater Influenced by the Phytoremediation with Water Hyacinth. Zhou, Qing,Chen, Ting,Han, Shiqun. 2017

[3]Promotion of the Growth and Quality of Chinese Cabbage by Application of Biogas Slurry of Water Hyacinth. Xue, Yanfeng,Shi, Zhiqi,Chen, Jian,Yan, Shaohua,Zheng, Jianchu. 2012

[4]USE OF FLOATING PLANTS FOR PURIFICATION OF HYPEREUTROPHIC FRESHWATER LAKE (CAOHAI BAY, DIANCHI LAKE, CHINA): A REVIEW OF ECOLOGICAL ENGINEERING MEASURES. Liu, Guo-Feng,Liu, Hong-Jiang,Zhang, Zhi-Yong. 2017

[5]Study on non-destructive estimation of nitrogen concentration of water hyacinth by hyperspectral data. Wang, Jingjing,Sun, Ling,Liu, Huazhou,Wang, Jingjing. 2016

[6]Monitoring biomass of water hyacinth by using hyperspectral remote sensing. Wang, Jingjing,Sun, Ling,Liu, Huazhou. 2012

[7]Effects of engineered use of water hyacinths (Eicchornia crassipes) on the zooplankton community in Lake Taihu, China. Chen, Huai-Guo,Peng, Fei,Zhang, Lei,Zhou, Xiao-Dan,Wang, Wei,Xue, Wen-Da,Xu, Xiao-Feng,Zhang, Zhi-Yong,Liu, Hai-Qin,Liu, Guo-Feng,Yan, Shao-Hua.

[8]Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Qin, Hongjie,Zhang, Zhiyong,Liu, Minhui,Liu, Haiqin,Wang, Yan,Wen, Xuezheng,Zhang, Yingying,Yan, Shaohua.

[9]Efficient assimilation of cyanobacterial nitrogen by water hyacinth. Qin, Hongjie,Zhang, Zhiyong,Liu, Minhui,Wang, Yan,Wen, Xuezheng,Yan, Shaohua,Zhang, Yingying,Liu, Haiqin.

[10]Fenced cultivation of water hyacinth for cyanobacterial bloom control. Qin, Hongjie,Zhang, Zhiyong,Liu, Haiqin,Wen, Xuezheng,Zhang, Yingying,Wang, Yan,Yan, Shaohua,Li, Dunhai.

[11]Nitrogen removal from Lake Caohai, a typical ultra-eutrophic lake in China with large scale confined growth of Eichhornia crassipes. Wang, Zhi,Zhang, Zhiyong,Zhang, Yingying,Zhang, Jungian,Yan, Shaohua,Guo, Junyao,Wang, Zhi,Zhang, Jungian.

作者其他论文 更多>>