Cinnamaldehyde Induces PCD-Like Death of Microcystis aeruginosa via Reactive Oxygen Species
文献类型: 外文期刊
作者: Hu, Liang Bin 1 ; Zhou, Wei 1 ; Yang, Jing Dong 1 ; Chen, Jian 1 ; Yin, Yu Fen 1 ; Shi, Zhi Qi 1 ;
作者机构: 1.Jiangsu Acad Agr Sci, Inst Food Safety, Nanjing 210014, Peoples R China
2.Henan Inst Sci & Technol, Sch Food Sci, Xinxiang 453003, Peoples R China
3.Minist Agr, Key Lab Food Safety Monitoring & Management, Nanjing 210014, Peoples R China
关键词: Cinnamaldehyde;M. aeruginosa;ROS;PCD
期刊名称:WATER AIR AND SOIL POLLUTION ( 影响因子:2.52; 五年影响因子:2.574 )
ISSN: 0049-6979
年卷期: 2011 年 217 卷 1-4 期
页码:
收录情况: SCI
摘要: In recent years, Microcystis bloom occurs frequently and causes a wide range of social, environmental, and economic problems. In this study, dose-dependent inhibitory effect of cinnamaldehyde on the growth of Microcystis aeruginosa was investigated. It was found that cinnamaldehyde with the concentration more than 0.6 mM showed algicide activity against M. aeruginosa. When M. aeruginosa was exposed to 0.6 mM cinnamaldehyde, considerable reactive oxygen species (ROS) were generated followed by lipid peroxidation and decrease in the content of both chlorophyll a and soluble protein. Although superoxide dismutase had made response to the stress caused by cinnamaldehyde, activity increasing after a time of lag could not prevent the lysis of M. aeruginosa cells. Interestingly, the addition of antioxidants glutathione and l-ascorbic acid (Vc) could prevent the lysis of M. aeruginosa cells. All the results suggested that cinnamaldehyde induced the death of M. aeruginosa cells via inducing ROS burst. Further understanding of the mechanism of cinnamaldehyde-induced M. aeruginosa cell death would contribute to the control of cyanobacteria pollution.
- 相关文献
作者其他论文 更多>>
-
Metabolomics and ionomics reveal the quality differences among peach, acacia and karaya gums
作者:Zhang, Kaiwei;Yu, Xiangyang;Zhang, Kaiwei;Chen, Meng;Zhang, Xue;Chen, Jian;Chen, Xiaolong;Li, Yong;Yu, Xiangyang;Zhang, Kaiwei;Chen, Meng;Zhang, Xue;Chen, Jian;Chen, Xiaolong;Li, Yong;Yu, Xiangyang;Liu, Xin
关键词:Gum; Metabolomics; Flavonoids; Total phenols content; Metabolites
-
Thymol Stimulates Lateral Root Formation via Regulating Endogenous Reactive Oxygen Species
作者:Li, Jiajun;Hu, Liangbin;Chen, Jian;Hao, Yini;Li, Yong;Wang, Ya;Yu, Xiangyang;Wang, Liyuan;Lu, Chuan
关键词:thymol; lateral root; reactive oxygen species; Rboh; NADPH oxidase; biostimulant
-
Colonization Mechanism of Endophytes with Plants and Their Role in Pesticides Degradation
作者:Ahmad, Faizan;Ahmad, Faizan;Wang, Pei;Sun, Pengyuan;Liu, Yang;Ge, Jing;Chen, Jian;Yu, Xiangyang;Wang, Pei;Sun, Pengyuan;Liu, Yang
关键词:endophytic bacteria; cell wall modification; phytohormones; secretion systems; reactive oxygenspecies; pesticides
-
Investigation and insights into the technical strategies for reducing agrochemical inputs in rice farming to enhance agroecosystem resilience and food safety, A case study in China
作者:Zhang, Yaodong;Zhang, Haoran;Zhang, Cunzheng;Zhang, Yaodong;Zhang, Haoran;Chen, Jian;Li, Pan;Wang, Yulong;Liu, Pengyan;Zhang, Cunzheng;Tao, Tingting;Zhu, Yiyong;Routledge, Michael N.;Yang, Cuifeng
关键词:Agrochemical; Heavy metal; Metagenomics; Risk assessment; Soil fertility; Sustainable agriculture
-
Growth-promoting bacterium Enterobacter sp. CS8-gfp triggers jasmonate signaling pathway for atrazine and thiamethoxam degradation in rice (Oryza sativa L.)
作者:Ma, Li Ya;Wan, Qun;Ge, Jing;Li, Yong;Feng, Fayun;Li, Mei;Cheng, Jinjin;Chen, Jian;Wang, Ya;Cao, Yaoyao;Yu, Xiangyang;Ma, Li Ya;Wan, Qun;Ge, Jing;Li, Yong;Feng, Fayun;Li, Mei;Cheng, Jinjin;Chen, Jian;Wang, Ya;Cao, Yaoyao;Yu, Xiangyang;Yang, Chenye
关键词:Growth-promoting bacterium; Atrazine; Thiamethoxam; Jasmonic acid; Degradation
-
Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research
作者:Wang, Tingting;Xu, Jiaxin;Liu, Peng;Hou, Xin;Yang, Long;Zhang, Li;Chen, Jian
关键词:microbiological fertilizer; plant-growth-promoting bacteria; crop growth; soil remediation
-
Thidiazuron combined with cyclanilide modulates hormone pathways and ROS systems in cotton, increasing defoliation at low temperatures
作者:Shu, Hongmei;Sun, Shangwen;Wang, Xiaojing;Yang, Changqin;Zhang, Guowei;Li, Zhikang;Liang, Ting;Liu, Ruixian;Chen, Jian;Han, Huanyong
关键词:cyclanilide; thidiazuron; cotton; low temperature; defoliation



