您好,欢迎访问江苏省农业科学院 机构知识库!

Multi-Temporal Hyperspectral and Radar Remote Sensing for Estimating Winter Wheat Biomass in the North China Plain

文献类型: 外文期刊

作者: Koppe, Wolfgang 2 ; Gnyp, Martin L. 2 ; Hennig, Simon D. 1 ; Li, Fei 4 ; Miao, Yuxin 5 ; Chen, Xinping 3 ; Jia, Liangl 1 ;

作者机构: 1.Astrium GEO Informat Serv, D-88039 Friedrichshafen, Germany

2.Univ Cologne, Inst Geog, GIS & RS Grp, D-50923 Cologne, Germany

3.China Agr Univ, Coll Resources & Environm Sci, Dept Plant Nutr, CN-100094 Beijing, Peoples R China

4.Inner Mongolia Agr Univ, Coll Ecol & Environm Sci, CN-010019 Hohhot, Peoples R China

5.China Agr Univ, Coll Resources & Environm Sci, Agroinformat & Sustainable Dev Grp, CN-100193 Beijing, Peoples R China

6.Hebei Acad Agr & Forestry Sci, Inst Agr Resources & Environm, CN-050051 Shijiazhuang, Peoples R China

关键词: SAR;hyperspectral imaging;vegetation indices;multi-spectral;biomass

期刊名称:PHOTOGRAMMETRIE FERNERKUNDUNG GEOINFORMATION ( 影响因子:1.85; 五年影响因子:1.091 )

ISSN: 1432-8364

年卷期: 2012 年 3 期

页码:

收录情况: SCI

摘要: This paper illustrates the results obtained in the frame of experimental campaigns carried out on winter wheat fields in the North China Plain from March 2006 to June 2007. Investigations focused on the methodology of estimating biomass on a regional scale with hyperspectral (EO-1 Hyperion) and microwave data (Envisat ASAR). Special importance is drawn to the combined analysis of microwave and optical satellite data for crop monitoring. Since hyperspectral and synthetic aperture radar (SAR) sensors respond to crop characteristics differently, their complementary information content can support the estimation of crop conditions. During the regular field measurements, satellite data from jointing to ripening stages were acquired. Linear regression models between measured surface reflection as well as surface backscatter and wheat's standing biomass were established. For hyperspectral data, the normalized ratio index (NRI) based on 825 nm and 1225 nm wavebands was calculated from 2006 data as input for the regression model. In addition, Envisat ASAR VV polarization data were related to winter wheat crop parameters. Bivariate correlation results from this study indicate that both multi-temporal EO-1 Hyperion as well as Envisat ASAR data provide notable relationships with crop conditions. As expected, linear correlation of hyperspectral data performed slightly better for biomass estimation (R-2 = 0.83) than microwave data (R-2 = 0.75) for the 2006 field survey. Based on the results, hyperspectral Hyperion data seem to be more sensitive to crop conditions. Improvements for crop parameter estimation were achieved by combining hyperspectral indices and microwave backscatter into a multiple regression analysis as a function of crop parameters. Combined analysis was performed for biomass estimation (R-2 = 0.90) with notable improvements in prediction power.

  • 相关文献

[1]外源诱导植物获得抗病性的研究进展. 徐建明,朱云林,王伟中,张进成. 2001

[2]基于特征保持的线性多通道最优求和SAR图像滤波算法. 杨沈斌,李秉柏,申双和,张萍萍. 2006

[3]Nitrogen Status Estimation of Winter Wheat by Using an IKONOS Satellite Image in the North China Plain. Yu, Zihui,Li, Fei,Miao, Yuxin,Chen, Xinping,Zhang, Fusuo,Jia, Liangliang,Gnyp, Martin,Koppe, Wolfgang,Bareth, Georg. 2012

[4]Rice growth monitoring using simulated compact polarimetric C band SAR. Yang, Zhi,Li, Kun,Liu, Long,Shao, Yun,Yang, Zhi,Liu, Long,Brisco, Brian,Li, Weiguo. 2014

[5]Early Detection of Aspergillus parasiticus Infection in Maize Kernels Using Near-Infrared Hyperspectral Imaging and Multivariate Data Analysis. Zhao, Xin,Wang, Wei,Chu, Xuan,Kimuli, Daniel,Li, Chunyang. 2017

[6]Applying hyperspectral imaging to explore natural plant diversity towards improving salt stress tolerance. Brestic, Marian,Shao, Hongbo,He, Xiaolan,Shao, Hongbo,Brestic, Marian,Zivcak, Marek,Olsovska, Katarina,Kovar, Marek,Sytar, Oksana.

[7]Prediction of pH of fresh chicken breast fillets by VNIR hyperspectral imaging. Jia, Beibei,Wang, Wei,Yoon, Seung-Chul,Zhuang, Hong,Li, Chunyang.

[8]Models of Dry Matter Production and Yield Formation for the Protected Tomato. Chen, Yuli,Zhang, Zhiyou,Zhu, Yan,Chen, Yuli,Zhang, Zhiyou,Liu, Yan,Cao, Hongxin. 2012

[9]Biomass-Based Rice (Oryza sativa L.) Aboveground Architectural Parameter Models. Cao Hong-xin,Liu Yan,Liu Yong-xia,Yue Yan-bin,Zhu Da-wei,Shi Chun-lin,Ge Dao-kuo,Wei Xiu-fang,Hanan, Jim Scott,Yue Yan-bin,Lu Jian-fei,Sun Jin-ying,Yao An-qing,Tian Ping-ping,Bao Tai-lin. 2012

[10]Development and implementation of a multiscale biomass model using hyperspectral vegetation indices for winter wheat in the North China Plain. Bareth, Georg,Lenz-Wiedemann, Victoria I. S.,Koppe, Wolfgang,Gnyp, Martin L.,Bareth, Georg,Li, Fei,Lenz-Wiedemann, Victoria I. S.,Chen, Xinping,Gnyp, Martin L.,Li, Fei,Miao, Yuxin,Jia, Liangliang,Koppe, Wolfgang,Hennig, Simon D.,Jia, Liangliang,Chen, Xinping,Zhang, Fusuo,Laudien, Rainer. 2014

[11]Biomass-Based Leaf Curvilinear Model for Rapeseed (Brassica napus L.). Zhang, Wenyu,Zhang, Weixin,Ge, Daokuo,Cao, Hongxin,Liu, Yan,Fu, Kunya,Feng, Chunhuan,Chen, Weitao,Song, Chuwei. 2016

[12]Monitoring biomass of water hyacinth by using hyperspectral remote sensing. Wang, Jingjing,Sun, Ling,Liu, Huazhou. 2012

[13]Biomass-based rapeseed (Brassica napus L.) stem and rachis geometric parameter model. Liu, Yan,Zhang, Weixin,Chen, Weitao,Cao, Hongxin,Ge, Daokuo,Feng, Chunhuan,Song, Chuwei,Ge, Sijun,Liu, Yongxia. 2016

[14]Rapeseed (Brassica napus L.) Primary Ramification Morphological Structural Model Based on Biomass. Zhang, Weixin,Cao, Hongxin,Zhang, Wenyu,Liu, Yan,Ge, Daokuo,Feng, Chunhuan,Chen, Weitao,Song, Chuwei. 2016

[15]Field-scale fluorescence fingerprinting of biochar-borne dissolved organic carbon. Liu, Zhongzhen,Liu, Zhongzhen,Sistani, Karamat.

[16]Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere. Mao, Peili,Zhang, Yujuan,Cao, Banghua,Guo, Longmei,Cao, Zhenyu,Jiang, Qiankun,Wang, Xuan,Shao, Hongbo,Shao, Hongbo.

[17]Biomass-Based Leaf Curvilinear Model for Rapeseed (Brassica napus L.). Wenyu Zhang,Weixin Zhang,Daokuo Ge,Hongxin Cao,Yan Liu,Kunya Fu,Chunhuan Feng,Weitao Chen,Chuwei Song. 2016

[18]Rapeseed (Brassica napus L.) Primary Ramification Morphological Structural Model Based on Biomass. Weixin Zhang,Hongxin Cao,Wenyu Zhang,Yan Liu,Daokuo Ge,Chunhuan Feng,Weitao Chen,Chuwei Song. 2016

[19]Models of Dry Matter Production and Yield Formation for the Protected Tomato. Yuli Chen,Zhiyou Zhang,Yan Liu,Yan Zhu,Hongxin Cao. 2012

作者其他论文 更多>>