您好,欢迎访问河南省农业科学院 机构知识库!

Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations

文献类型: 外文期刊

作者: Li, Fang 1 ; Chen, Lin 2 ; Zhang, Jiabao 1 ; Yin, Jun 1 ; Huang, Shaomin 3 ;

作者机构: 1.Henan Agr Univ, Collaborat Innovat Ctr Henan Grain Crops, Zhengzhou, Peoples R China

2.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing, Jiangsu, Peoples R China

3.Henan Acad Agr Sci, Inst Plant Nutr & Environm Resources Sci, Zhengzhou, Peoples R China

关键词: long-term fertilization;soil bacteria;specific taxa;co-occurrence;nutrient transformations

期刊名称:FRONTIERS IN MICROBIOLOGY ( 影响因子:5.64; 五年影响因子:6.32 )

ISSN: 1664-302X

年卷期: 2017 年 8 卷

页码:

收录情况: SCI

摘要: Fertilization has a large impact on the soil microbial communities, which play pivotal roles in soil biogeochemical cycling and ecological processes. While the effects of changes in nutrient availability due to fertilization on the soil microbial communities have received considerable attention, specific microbial taxa strongly influenced by long-term organic and inorganic fertilization, their potential effects and associations with soil nutrients remain unclear. Here, we use deep 16S amplicon sequencing to investigate bacterial community characteristics in a fluvo-aquic soil treated for 24 years with inorganic fertilizers and organics (manure and straw)-inorganic fertilizers, and uncover potential links between soil nutrient parameters and specific bacterial taxa. Our results showed that combined organic-inorganic fertilization increased soil organic carbon (SOC) and total nitrogen (TN) contents and altered bacterial community composition, while inorganic fertilization had little impact on soil nutrients and bacterial community composition. SOC and TN emerged as the major determinants of community composition. The abundances of specific taxa, especially Arenimonas, Gemmatimonas, and an unclassified member of Xanthomonadaceae, were substantially increased by organic-inorganic amendments rather than inorganic amendments only. A co-occurrence based network analysis demonstrated that SOC and TN had strong positive associations with some taxa (Gemmatimonas and the members of Acidobacteria subgroup 6, Myxococcales, Betaproteobacteria, and Bacteroidetes), and Gemmatimonas, Flavobacterium, and an unclassified member of Verrucomicrobia were identified as the keystone taxa. These specific taxa identified above are implicated in the decomposition of complex organic matters and soil carbon, nitrogen, and phosphorus transformations. The present work strengthens our current understanding of the soil microbial community structure and functions under long-term fertilization management and provides certain theoretical support for selection of rational fertilization strategies.

  • 相关文献

[1]Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Duan, Yinghua,Xu, Minggang,Liu, Hongbin,Wang, Bairen,Gao, Suduan,Yang, Xueyun,Huang, Shaomin. 2014

[2]Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China. He, Y. T.,Zhang, W. J.,Xu, M. G.,Sun, F. X.,Wang, J. Z.,He, X. H.,Tong, X. G.,Huang, S. M.,Zhu, P.,He, X. H..

[3]Dynamics of Soil and Grain Micronutrients as Affected by Long-Term Fertilization in an Aquic Inceptisol. Li Ben-Yin,Huang Shao-Min,Shen A-Lin,Li Ben-Yin,Shen A-Lin,Xu Jian-Ming,Wei Ming-Bao,Zhang, H. L.,Ruan Xin-Ling.

[4]Impacts of fertilization practices on pH and the pH buffering capacity of calcareous soil. Zhang, Yongyong,Wang, Ruzhen,Cai, Jiangping,Li, Hui,Jiang, Yong,Zhang, Yongyong,Cai, Jiangping,Zhang, Shuiqing,Huang, Shaomin,Zhang, Yuge.

[5]Long-term organic and inorganic fertilizations enhanced basic soil productivity in a fluvo-aquic soil. Zha Yan,Wu Xue-ping,Gong Fu-fei,Xu Ming-gang,Zhang Hui-min,Cai Dian-xiong,Chen Li-ming,Huang Shao-min. 2015

[6]Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Zhang, Shuiqing,Guo, Doudou,Huang, Shaomin,Ai, Chao,Zhang, Xin,Zhou, Wei. 2018

[7]An analysis of soil carbon dynamics in long-term soil fertility trials in China. Cong, Rihuan,Xu, Minggang,Zhang, Wenju,Wang, Boren,Cong, Rihuan,Wang, Xiujun,Wang, Xiujun,Yang, Xueyun,Huang, Shaomin. 2012

[8]Long-term response of soil Olsen P and organic C to the depletion or addition of chemical and organic fertilizers. Shen, Pu,Xu, Minggang,Zhang, Huimin,Zhang, Shuxiang,Shen, Pu,He, Xinhua,Yang, Xueyun,Huang, Shaomin. 2014

[9]Carbon and nitrogen allocations in corn grown in Central and Northeast China: different responses to fertilization treatments. Mia Hui-tian,Lu Jia-long,Mia Hui-tian,Xu Ming-gang,Zhang Wen-ju,Huang Shao-min,Peng Chang,Chen Li-ming. 2015

[10]Responses of soil micro-food web to long-term fertilization in a wheat-maize rotation system. Zhang, Zhiyong,Zhang, Xiaoke,Liang, Wenju,Zhang, Zhiyong,Xu, Minggang,Zhang, Shuiqing,Huang, Shaomin.

[11]Long-term manure amendments and chemical fertilizers enhanced soil organic carbon sequestration in a wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system. Zhang, Shuiqing,Lin, Shan,Lu, Guoan,Zhang, Shuiqing,Huang, Shaomin,Guo, Doudou,Li, Jianwei.

作者其他论文 更多>>