您好,欢迎访问浙江省农业科学院 机构知识库!

Foxtail Millet NF-Y Families: Genome-Wide Survey and Evolution Analyses Identified Two Functional Genes Important in Abiotic Stresses

文献类型: 外文期刊

作者: Feng, Zhi-Juan 1 ; He, Guan-Hua 1 ; Zheng, Wei-Jun; Lu, Pan-Pan 1 ; Chen, Ming 1 ; Gong, Ya-Ming; Ma, You-Zhi 1 ; X 1 ;

作者机构: 1.CAAS, Natl Key Facil Crop Gene Resources & Genet Improv, Key Lab Biol & Genet Improvement Triticeae Crops, Inst Crop Sci,Minist Agr, Beijing, Peoples R China

2.Zhejiang Acad Agr, Inst Vegetables, Hangzhou, Zhejiang, Peoples R Chin

关键词: NF-Y transcription factor;evolution analysis;induced mechanism;gene regulation;physiological trait;drought tolerance;Setaria italica

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:5.753; 五年影响因子:6.612 )

ISSN: 1664-462X

年卷期: 2015 年 6 卷

页码:

收录情况: SCI

摘要: It was reported that Nuclear Factor Y (NF-Y) genes were involved in abiotic stress in plants. Foxtail millet (Setada italica), an elite stress tolerant crop, provided an impetus for the investigation of the NF-Y families in abiotic responses. In the present study, a total of 39 NF-Y genes were identified in foxtail millet. Synteny analyses suggested that foxtail millet NF-Y genes had experienced rapid expansion and strong purifying selection during the process of plant evolution. De novo transcriptome assembly of foxtail millet revealed 11 drought up-regulated NF-Y genes. SiNF-YA1 and SiNF-YBB were highly activated in leaves and/or roots by drought and salt stresses. Abscisic acid (ABA) and H2O2 played positive roles in the induction of SiNF-YA1 and SiNF-YB8 under stress treatments. Transient luciferase (LUG) expression assays revealed that SiNF-YA1 and SiNF-YB8 could activate the LUG gene driven by the tobacco (Nicotiana tobacam) NtERD10, NtLEA5, NtCAT, NtSOD, or NtPOD promoter under normal or stress conditions. Overexpression of SiNF-YA1 enhanced drought and salt tolerance by activating stress related genes NtERD10 and NtCAT1 and by maintaining relatively stable relative water content (RWC) and contents of chlorophyll, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and malondialdehyde (MDA) in transgenic lines under stresses. SiNF-YBB regulated expression of NtSOD, NtPOD, NtLEA5, and NtERD10 and conferred relatively high RWC and chlorophyll contents and low MBA content, resulting in drought and osmotic tolerance in transgenic lines under stresses. Therefore, SiNF-YA1 and SiNF-YB8 could activate stress-related genes and improve physiological traits, resulting in tolerance to abiotic stresses in plants. All these results will facilitate functional characterization of foxtail millet NF-Ys in future studies.

  • 相关文献

[1]Identification of the AQP members involved in abiotic stress responses from Arabidopsis. Feng, Zhi-Juan,Xu, Sheng-Chun,Liu, Na,Zhang, Gu-Wen,Hu, Qi-Zan,Gong, Ya-Ming,Xu, Zhao-Shi. 2018

[2]Genome-wide identification and comparative analysis of grafting-responsive mRNA in watermelon grafted onto bottle gourd and squash rootstocks by high-throughput sequencing. Liu, Na,Yang, Jinghua,Fu, Xinxing,Zhang, Li,Guy, Kateta Malangisha,Hu, Zhongyuan,Zhang, Mingfang,Liu, Na,Tang, Kai,Guo, Shaogui,Xu, Yong.

[3]Characterization of a Novel NBS-LRR Gene Involved in Bacterial Blight Resistance in Rice. Wang, Xuming,Chen, Juan,Yang, Yong,Zhou, Jie,Qiu, Yan,Yu, Chulang,Cheng, Ye,Yan, Chengqi,Chen, Jianping,Wang, Xuming,Chen, Juan,Yang, Yong,Zhou, Jie,Qiu, Yan,Yu, Chulang,Cheng, Ye,Yan, Chengqi,Chen, Jianping,Wang, Xuming,Chen, Juan,Yang, Yong,Zhou, Jie,Qiu, Yan,Yu, Chulang,Cheng, Ye,Yan, Chengqi,Chen, Jianping.

[4]Divergently expressed gene identification and interaction prediction of long noncoding RNA and mRNA involved in duck reproduction. Ren, Jindong,Hu, Jianhong,Ren, Jindong,Du, Xue,Zeng, Tao,Chen, Li,Shen, Junda,Lu, Lizhi.

[5]Characterization of transgenic cotton (Gossypium hirsutum L.) over-expressing Arabidopsis thaliana Related to ABA-insensitive3(ABI3)/Vivparous1 (AtRAV1) and AtABI5 transcription factors: improved water use efficiency through altered guard cell physiology. Fiene, Justin G.,Kalns, Lauren,Sword, Gregory A.,Mallick, Sayani,Mittal, Amandeep,Rock, Christopher D.,Nansen, Christian,Nansen, Christian,Dever, Jane.

[6]Co-overexpression of AVP1 and AtNHX1 in Cotton Further Improves Drought and Salt Tolerance in Transgenic Cotton Plants. Shen, Guoxin,Wei, Jia,Qiu, Xiaoyun,Hu, Rongbin,Kuppu, Sundaram,Zhang, Hong,Auld, Dick,Blumwald, Eduardo,Gaxiola, Roberto,Payton, Paxton.

[7]Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Qin, Hua,Zhang, Yizheng,Gu, Qiang,Kuppu, Sundaram,Sun, Li,Zhu, Xunlu,Mishra, Neelam,Hu, Rongbin,Zhang, Hong,Shen, Guoxin,Zhang, Junling,Burow, Mark,Zhu, Longfu,Zhang, Xianlong,Payton, Paxton. 2013

作者其他论文 更多>>