您好,欢迎访问浙江省农业科学院 机构知识库!

In silico analysis of gene content in tomato genomic regions mapped to the Ty-2 resistance gene

文献类型: 外文期刊

作者: Liu, Y. F. 1 ; Wan, H. J. 1 ; Wei, Y. P. 1 ; Wang, R. Q. 1 ; Ruan, M. Y. 1 ; Ye, Q. J. 1 ; Li, Z. M. 1 ; Zhou, G. Z. 1 ; Yao 1 ;

作者机构: 1.Zhejiang Acad Agr Sci, Inst Vegetables, State Key Lab Breeding Base Zhejiang Sustainable, Hangzhou, Zhejiang, Peoples R China

2.Zhejiang

关键词: Disease resistance;Expressed sequence tag;Tomato;Ty-2;Tomato yellow leaf curl virus

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2015 年 14 卷 3 期

页码:

收录情况: SCI

摘要: Tomato yellow leaf curl virus is one of the main diseases affecting tomato production worldwide. Previous studies have shown that Ty-2 is an important resistance gene located between molecular markers C2_At2g28250 (82.3 cM) and T0302 (89.0 cM), and exhibits strong resistance to tomato yellow leaf curl virus in Asia. In this study, Ty-2 candidate genes were subjected to bioinformatic analysis for the sequenced tomato genome. We identified 69 genes between molecular markers C2_At2g28250 and T0302, 22 of which were disease-related resistant genes, including nucleotide binding site-leucine-rich repeat disease resistance genes, protease genes (protein kinase, kinase receptor, and protein isomerase), cytochromes, and transcription factors. Expressed sequence tag analysis revealed that 77.3% (17/22) of candidate disease-resistance genes were expressed, involving 143 expressed sequence tags. Based on full-length cDNA sequence analysis, 7 candidate genes were found, 4 of which were involved in tomato responses to pathogens. Microarray expression analysis also showed that most candidate genes were involved in the tomato responses to multiple pathogens, including fungi, viruses, and bacteria. RNA-seq expression analysis revealed that all candidate genes participated in tomato growth and development.

  • 相关文献

[1]Assessment of the genetic diversity of tomato yellow leaf curl virus. Wan, H. J.,Wang, R. Q.,Ye, Q. J.,Ruan, M. Y.,Li, Z. M.,Zhou, G. Z.,Yao, Z. P.,Yang, Y. J.,Yuan, W.. 2015

[2]Genetic Diversity Analysis of Faba Bean (Vicia faba L.) Based on EST-SSR Markers. Gong Ya-ming,Xu Sheng-chun,Hu Qi-zan,Zhang Gu-wen,Ding Ju,Mao Wei-hua,Li Ze-yun. 2011

[3]Evaluation of tomato maturity by electronic nose. Gomez, Antihus Hernandez,Hu, Guixian,Wang, Jun,Pereira, Annia Garcia. 2006

[4]The SOD Gene Family in Tomato: Identification, Phylogenetic Relationships, and Expression Patterns. Feng, Kun,Zheng, Qingsong,Feng, Kun,Yu, Jiahong,Cheng, Yuan,Ruan, Meiying,Wang, Rongqing,Ye, Qingjing,Zhou, Guozhi,Li, Zhimiao,Yao, Zhuping,Yang, Yuejian,Wan, Hongjian,Yu, Jiahong. 2016

[5]Determination of difenoconazole residue in tomato during home canning by UPLC-MS/MS. Dong, Fengshou,Xu, Jun,Liu, Xingang,Li, Jing,Li, Yuanbo,Chen, Xiu,Zheng, Yongquan,Zhang, Changpeng,Shan, Weili. 2012

[6]Genome-Wide Identification and Evaluation of Reference Genes for Quantitative RT-PCR Analysis during Tomato Fruit Development. Cheng, Yuan,Yu, Jiahong,Zhou, Guozhi,Wang, Rongqing,Ruan, Meiying,Li, Zhimiao,Ye, Qingjing,Yao, Zhuping,Yang, Yuejian,Wan, Hongjian,Bian, Wuying,Pang, Xin,Ahammed, Golam J.. 2017

[7]A GENETIC-ANALYSIS OF A TOMATO (LYCOPERSICON-ESCULENTUM) GENOTYPE WITH A HIGH-FREQUENCY OF TWIN SPOTS. ZHU, D,SCHOENMAKERS, HCH,WOLTERS, AMA,KOORNNEEF, M. 1995

[8]Transmission Efficiency, Preference and Behavior of Bemisia tabaci MEAM1 and MED under the Influence of Tomato Chlorosis Virus. Zhang, Deyong,Liu, Yong,Tang, Xin,Zhang, Xing,Li, Fan,Yan, Fei,Zhang, Youjun,Zhou, Xuguo. 2018

[9]Biofilm formation ability of Paenibacillus polymyxa and Paenibacillus macerans and their inhibitory effect against tomato bacterial wilt. Wang, Yanli,Sun, Guochang,Li, Bin,Tang, Qiaomei,Su, Ting,Chen, Xiaoling,Zhu, Bo,Xie, Guanlin,Yu, Rongrong. 2011

[10]Lead-induced changes in plant morphology, cell ultrastructure, growth and yields of tomato. Zhao, Shouping,Ye, Xuzhu,Zheng, Jici. 2011

[11]Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum. Zai, W. S.,Xiong, Z. L.,Zhang, H. L.,Ma, Y. R.,Li, Y. L.,Chen, Y. B.,Ye, S. G.,Zai, W. S.,Xiong, Z. L.,Zhang, H. L.,Ma, Y. R.,Li, Y. L.,Miao, L. X.. 2015

[12]The current situation and trend of tomato cultivation in China. Xu, ZH,Shou, WL,Huang, KM,Zhou, SJ,Li, GJ,Tang, GC,Xiu, XC,Xu, GL,Jin, BS.

[13]Responses to cadmium stress in two tomato genotypes differing in heavy metal accumulation. Zhao, Shouping,Zhang, Yongzhi,Ye, Xuezhu,Zhang, Qi,Xiao, Wendan.

[14]Effect of arbuscular mycorrhizal fungi on aggregate stability of a clay soil inoculating with two different host plants. Xu, Ping,Liang, Lin Zhou,Dong, Xiao Ying,Shen, Ren Fang,Xu, Ping.

[15]Functional analysis of rice NPR1-like genes reveals that OsNPR1/NH1 is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Yuan, Yuexing,Zhong, Sihui,Li, Qun,Zhu, Zengrong,Lou, Yonggen,Wang, Linyou,Wang, Jianjun,Wang, Muyang,Li, Qiaoli,Yang, Donglei,He, Zuhua. 2007

[16]Characterization of a Novel NBS-LRR Gene Involved in Bacterial Blight Resistance in Rice. Wang, Xuming,Chen, Juan,Yang, Yong,Zhou, Jie,Qiu, Yan,Yu, Chulang,Cheng, Ye,Yan, Chengqi,Chen, Jianping,Wang, Xuming,Chen, Juan,Yang, Yong,Zhou, Jie,Qiu, Yan,Yu, Chulang,Cheng, Ye,Yan, Chengqi,Chen, Jianping,Wang, Xuming,Chen, Juan,Yang, Yong,Zhou, Jie,Qiu, Yan,Yu, Chulang,Cheng, Ye,Yan, Chengqi,Chen, Jianping.

[17]Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Pottorff, Marti O.,Ehlers, Jeffery D.,Close, Timothy J.,Li, Guojing,Ehlers, Jeffery D.,Roberts, Philip A..

作者其他论文 更多>>