Spatial-spectral attention-enhanced Res-3D-OctConv for corn and weed identification utilizing hyperspectral imaging and deep learning
文献类型: 外文期刊
作者: Diao, Zhihua 1 ; Guo, Peiliang 1 ; Zhang, Baohua 2 ; Yan, Jiaonan 1 ; He, Zhendong 1 ; Zhao, Suna 1 ; Zhao, Chunjiang 3 ; Zhang, Jingcheng 4 ;
作者机构: 1.Zhengzhou Univ Light Ind, Sch Elect Informat Engn, Zhengzhou 450002, Peoples R China
2.Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing 211800, Peoples R China
3.Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing 100097, Peoples R China
4.Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310000, Peoples R China
关键词: Hyperspectral image; Improved octave convolution model; Spatial-spectral attention-enhanced model; Corn and weed identification
期刊名称:COMPUTERS AND ELECTRONICS IN AGRICULTURE ( 影响因子:8.3; 五年影响因子:8.3 )
ISSN: 0168-1699
年卷期: 2023 年 212 卷
页码:
收录情况: SCI
摘要: Corn production is an important basis to ensure the world food security, and weeds in the field will cause corn production decline. Therefore, in order to quickly recognize corn and weed in the field, a model was proposed by combining hyperspectral image with deep learning method. However, there are some problems in hyperspectral image, such as high redundancy of adjacent spectra and insufficient feature information extraction. In order to solve the above problems, the four principal components based on principal component analysis (PCA) were firstly extracted in this paper, so as to decrease the information redundancy between adjacent spectra. Secondly, the residual three-dimensional octave convolution (Res-3D-OctConv) was used to excavate the spatial infor-mation from the frequency components, while taking into account the spectral information. Finally, spatial and spectral attention models were introduced to highlight important spatial information and spectral information. At the same time, the spatial information and spectral information was integrated by cross fusion. Experimental results show that the recognition accuracy of the proposed model is 98.56 %, which is 8.65 % and 10.20 % higher than that of k-nearest neighbor (KNN) and support vector machine (SVM) respectively. The recognition result of the proposed model is further compared with that of 3D residual network (3D-ResNet) and 3D convolutional neural network (3D-CNN), and the recognition precision of the proposed model in this paper is increased by 1.40 % and 1.02 % compared with 3D-CNN and 3D-ResNet, respectively. The results show that the proposed model can better recognize the hyperspectral images of corn and weed.
- 相关文献
作者其他论文 更多>>
-
Staggered-Phase Spray Control: A Method for Eliminating the Inhomogeneity of Deposition in Low-Frequency Pulse-Width Modulation (PWM) Variable Spray
作者:Zhang, Chunfeng;Zhao, Chunjiang;Zhang, Chunfeng;Zhai, Changyuan;Zhang, Meng;Zhang, Chi;Zou, Wei;Zhao, Chunjiang;Zhang, Chunfeng;Zou, Wei;Zhai, Changyuan;Zhang, Meng;Zhao, Chunjiang
关键词:precision spray; variable spray; PWM; deposition; duty cycle; frequency
-
A novel electrochemical sensor for in situ and in vivo detection of sugars based on boronic acid-diol recognition
作者:Liu, Ke;Xu, Tongyu;Zhao, Chunjiang;Liu, Ke;Li, Aixue;Zhao, Chunjiang
关键词:Fructose; Glucose; Electrochemical biosensor; In situ; In vivo; Artificial neural network
-
Eliminating Primacy Bias in Online Reinforcement Learning by Self-Distillation
作者:Li, Jingchen;Wu, Huarui;Zhao, Chunjiang;Shi, Haobin;Hwang, Kao-Shing
关键词:Online reinforcement learning; overfitting; reinforcement learning
-
Using high-throughput phenotype platform MVS-Pheno to reconstruct the 3D morphological structure of wheat
作者:Li, Wenrui;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu;Zhao, Chunjiang;Li, Wenrui;Wu, Sheng;Wen, Weiliang;Lu, Xianju;Liu, Haishen;Zhang, Minggang;Xiao, Pengliang;Guo, Xinyu
关键词:3D reconstruction; plant morphology; point cloud segmentation; Wheat
-
Dynamic Compressive Stress Relaxation Model of Tomato Fruit Based on Long Short-Term Memory Model
作者:Ru, Mengfei;Zhao, Chunjiang;Feng, Qingchun;Sun, Na;Li, Yajun;Sun, Jiahui;Li, Jianxun;Ru, Mengfei;Feng, Qingchun;Zhao, Chunjiang
关键词:tomato; stress relaxation; machine learning; LSTM
-
Energy and environmental evaluation and comparison of a diesel-electric hybrid tractor, a conventional tractor, and a hillside mini-tiller using the life cycle assessment method
作者:Liu, Wei;Yang, Rui;Li, Li;Zhao, Chunjiang;Li, Guanglin;Zhao, Chunjiang
关键词:Agricultural machinery; Electrification; Hybrid electric tractor; Environmental impact
-
Agricultural machinery automatic navigation technology
作者:Yao, Zhixin;Zhao, Chunjiang;Zhang, Taihong;Zhao, Chunjiang;Yao, Zhixin;Zhang, Taihong
关键词: