Genome-Wide Analysis of SPL/miR156 Module and Its Expression Analysis in Vegetative and Reproductive Organs of Oil Palm (Elaeis guineensis)
文献类型: 外文期刊
作者: Zhou, Lixia 1 ; Yarra, Rajesh 2 ;
作者机构: 1.Chinese Acad Trop Agr Sci, Coconut Res Inst, Wenchang 571339, Peoples R China
2.Univ Wisconsin, Dept Plant & Agroecosyt Sci, Madison, WI 53706 USA
关键词: EgSPLs; miR156 target sites; qRT-PCR; inflorescences
期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )
ISSN: 1661-6596
年卷期: 2023 年 24 卷 17 期
页码:
收录情况: SCI
摘要: The SPL (SQUAMOSA-promoter binding protein-like) gene family is one of the largest plant transcription factors and is known to be involved in the regulation of plant growth, development, and stress responses. The genome-wide analysis of SPL gene members in a diverse range of crops has been elucidated. However, none of the genome-wide studies on the SPL gene family have been carried out for oil palm, an important oil-yielding plant. In this research, a total of 24 EgSPL genes were identified via a genome-wide approach. Phylogenetic analysis revealed that most of the EgSPLs are closely related to the Arabidopsis and rice SPL gene members. EgSPL genes were mapped onto the only nine chromosomes of the oil palm genome. Motif analysis revealed conservation of the SBP domain and the occurrence of 1-10 motifs in EgSPL gene members. Gene duplication analysis demonstrated the tandem duplication of SPL members in the oil palm genome. Heatmap analysis indicated the significant expression of SPL genes in shoot and flower organs of oil palm plants. Among the identified EgSPL genes, a total 14 EgSPLs were shown to be targets of miR156. Real-time PCR analysis of 14 SPL genes showed that most of the EgSPL genes were more highly expressed in female and male inflorescences of oil palm plants than in vegetative tissues. Altogether, the present study revealed the significant role of EgSPL genes in inflorescence development.
- 相关文献
作者其他论文 更多>>
-
Genome-wide identification, classification and expression analysis of MYB gene family in coconut (Cocos nucifera L.)
作者:Li, Jing;Guo, Shukuan;Min Htwe, Yin;Sun, Xiwei;Zhou, Lixia;Wang, Fangyuan;Zeng, Chunru;Chen, Shuangyan;Iqbal, Amjad;Yang, Yaodong;Chen, Shuangyan;Iqbal, Amjad
关键词:MYBs; genome-wide analysis; color; RNA-seq; qPCR; coconut
-
Integrated transcriptomic and metabolomic data reveal the cold stress responses molecular mechanisms of two coconut varieties
作者:Li, Jing;Wang, Fangyuan;Sayed, Md. Abu;Shen, Xiaojun;Zhou, Lixia;Liu, Xiaomei;Sun, Xiwei;Chen, Shuangyan;Wu, Yi;Lu, Lilan;Gong, Shufang;Iqbal, Amjad;Yang, Yaodong;Chen, Shuangyan;Iqbal, Amjad
关键词:coconut; varieties; cold stress; transcriptome; metabolome
-
Oil Palm AP2 Subfamily Gene EgAP2.25 Improves Salt Stress Tolerance in Transgenic Tobacco Plants
作者:Zhou, Lixia;Cao, Hongxing;Zeng, Xianhai;Wu, Qiufei;Li, Qihong;Martin, Jerome Jeyakumar John;Fu, Dengqiang;Liu, Xiaoyu;Li, Xinyu;Li, Rui;Ye, Jianqiu;Zhou, Lixia;Cao, Hongxing;Zeng, Xianhai;Wu, Qiufei;Li, Qihong;Martin, Jerome Jeyakumar John;Fu, Dengqiang;Liu, Xiaoyu;Li, Xinyu;Li, Rui;Ye, Jianqiu
关键词:EgAP2.25 gene; oil palm; tobacco; salinity stress; physiological and biochemical indexes; stress marker genes
-
Multi-Omics Approaches in Oil Palm Research: A Comprehensive Review of Metabolomics, Proteomics, and Transcriptomics Based on Low-Temperature Stress
作者:John Martin, Jerome Jeyakumar;Song, Yuqiao;Hou, Mingming;Zhou, Lixia;Liu, Xiaoyu;Li, Xinyu;Fu, Dengqiang;Li, Qihong;Cao, Hongxing;Li, Rui;John Martin, Jerome Jeyakumar;Song, Yuqiao;Hou, Mingming;Zhou, Lixia;Liu, Xiaoyu;Li, Xinyu;Fu, Dengqiang;Li, Qihong;Cao, Hongxing;Li, Rui;Song, Yuqiao;Hou, Mingming
关键词:oil palm; low temperature; omics; abiotic stress; stress tolerance
-
Metabonomics and Transcriptomic Analysis of Free Fatty Acid Synthesis in Seedless and Tenera Oil Palm
作者:Wei, Lu;Yang, Cheng;John Martin, Jerome Jeyakumar;Li, Rui;Zhou, Lixia;Cao, Hongxing;Liu, Xiaoyu;Wei, Lu;Yang, Cheng;John Martin, Jerome Jeyakumar;Li, Rui;Zhou, Lixia;Cao, Hongxing;Liu, Xiaoyu;Wei, Lu;Cheng, Shuanghong
关键词:oil palm; metabolomics; transcriptomics; lipid synthesis; free fatty acid
-
Catalase (CAT) Gene Family in Oil Palm (Elaeis guineensis Jacq.): Genome-Wide Identification, Analysis, and Expression Profile in Response to Abiotic Stress
作者:Zhou, Lixia;John Martin, Jerome Jeyakumar;Li, Rui;Zeng, Xianhai;Wu, Qiufei;Li, Qihong;Fu, Dengqiang;Li, Xinyu;Liu, Xiaoyu;Ye, Jianqiu;Cao, Hongxing;Zhou, Lixia;John Martin, Jerome Jeyakumar;Li, Rui;Zeng, Xianhai;Wu, Qiufei;Li, Qihong;Fu, Dengqiang;Li, Xinyu;Liu, Xiaoyu;Ye, Jianqiu;Cao, Hongxing
关键词:oil palm; CAT; genome-wide; abiotic stress; qPCR
-
Lipidomic Profiles of Lipid Biosynthesis in Oil Palm during Fruit Development
作者:Martin, Jerome Jeyakumar John;Wu, Qiufei;Feng, Meili;Li, Rui;Zhou, Lixia;Zhang, Shuyan;Yang, Cheng;Cao, Hongxing
关键词:oil palm; metabolome; lipidomics; LC-MS; fatty acids; glycolipids; triacylglycerol