您好,欢迎访问中国热带农业科学院 机构知识库!

De novo assembly and characterization of bark transcriptome using Illumina sequencing and development of EST-SSR markers in rubber tree (Hevea brasiliensis Muell. Arg.)

文献类型: 外文期刊

作者: Li, Dejun 1 ; Deng, Zhi 1 ; Qin, Bi 1 ; Liu, Xianghong 1 ; Men, Zhonghua 2 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Key Lab Biol & Genet Resources Rubber Tree, Minist Agr, Rubber Res Inst, Danzhou 571737, Hainan, Peoples R China

2.Baotou Teachers Coll, Baotou 014030, Inner Mongolia, Peoples R China

关键词: Rubber tree;Transcriptome;EST-SSR;Illumina paired-end sequencing;de novo assembly;Bark

期刊名称:BMC GENOMICS ( 影响因子:3.969; 五年影响因子:4.478 )

ISSN: 1471-2164

年卷期: 2012 年 13 卷

页码:

收录情况: SCI

摘要: Background: In rubber tree, bark is one of important agricultural and biological organs. However, the molecular mechanism involved in the bark formation and development in rubber tree remains largely unknown, which is at least partially due to lack of bark transcriptomic and genomic information. Therefore, it is necessary to carried out high-throughput transcriptome sequencing of rubber tree bark to generate enormous transcript sequences for the functional characterization and molecular marker development. Results: In this study, more than 30 million sequencing reads were generated using Illumina paired-end sequencing technology. In total, 22,756 unigenes with an average length of 485 bp were obtained with de novo assembly. The similarity search indicated that 16,520 and 12,558 unigenes showed significant similarities to known proteins from NCBI non-redundant and Swissprot protein databases, respectively. Among these annotated unigenes, 6,867 and 5,559 unigenes were separately assigned to Gene Ontology (GO) and Clusters of Orthologous Group (COG). When 22,756 unigenes searched against the Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG) database, 12,097 unigenes were assigned to 5 main categories including 123 KEGG pathways. Among the main KEGG categories, metabolism was the biggest category (9,043, 74.75%), suggesting the active metabolic processes in rubber tree bark. In addition, a total of 39,257 EST-SSRs were identified from 22,756 unigenes, and the characterizations of EST-SSRs were further analyzed in rubber tree. 110 potential marker sites were randomly selected to validate the assembly quality and develop EST-SSR markers. Among 13 Hevea germplasms, PCR success rate and polymorphism rate of 110 markers were separately 96.36% and 55.45% in this study. Conclusion: By assembling and analyzing de novo transcriptome sequencing data, we reported the comprehensive functional characterization of rubber tree bark. This research generated a substantial fraction of rubber tree transcriptome sequences, which were very useful resources for gene annotation and discovery, molecular markers development, genome assembly and annotation, and microarrays development in rubber tree. The EST-SSR markers identified and developed in this study will facilitate marker-assisted selection breeding in rubber tree. Moreover, this study also supported that transcriptome analysis based on Illumina paired-end sequencing is a powerful tool for transcriptome characterization and molecular marker development in non-model species, especially those with large and complex genomes.

  • 相关文献

[1]RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Xia, Zhihui,Xu, Huimin,Zhai, Jinling,Luo, Hongli,He, Chaozu,Huang, Xi,Li, Dejun.

[2]Identification of novel microRNAs in Hevea brasiliensis and computational prediction of their targets. Gebelin, Virginie,Argout, Xavier,Engchuan, Worrawat,Pitollat, Bertrand,Duan, Cuifang,Montoro, Pascal,Leclercq, Julie,Engchuan, Worrawat,Duan, Cuifang. 2012

[3]Transcriptome sequencing and analysis of rubber tree (Hevea brasiliensis Muell.) to discover putative genes associated with tapping panel dryness (TPD). Liu, Jin-Ping,Tian, Xiao-Yan,Xia, Zhi-Qiang,Li, Yi-Jian. 2015

[4]Transcriptome sequencing and comparative analysis reveal long-term flowing mechanisms in Hevea brasiliensis latex. Wei, Fang,Luo, Shigiao,Zheng, Qiankun,Qiu, Jian,Yang, Wenfeng,Wu, Ming,Xiao, Xianzhou.

[5]橡胶树炭疽病菌Cap2移基因的克隆和序列分析. 林春花,李超萍,李博勋,周维,黄贵修. 2012

[6]Distribution of vegetative storage proteins in Rosaceae. Tian, WM,Hu, ZH.

[7]Vegetative storage protein in Litchi chinensis, a subtropical evergreen fruit tree, possesses trypsin inhibitor activity. Tian, Wei-Min,Peng, Shi-Qing,Wang, Xu-Chu,Shi, Min-Jing,Chen, Yue-Yi,Hu, Zheng-Hai.

[8]Design of natural rubber precision ditch fertilization machine. Wang, Yeqin,Deng, Yiguo,Zhang, Yuan,Wei, Lijiao. 2017

[9]Gain-of-function in Arabidopsis (GAINA) for identifying functional genes in Hevea brasiliensis. Cheng, Han,Gao, Jing,Cai, Haibin,Zhu, Jianshun,Huang, Huasun,Cheng, Han,Huang, Huasun. 2016

[10]Molecular mechanism of ethylene stimulation of latex yield in rubber tree (Hevea brasiliensis) revealed by de novo sequencing and transcriptome analysis. Liu, Jin-Ping,Zhuang, Yu-Fen,Guo, Xiu-Li,Li, Yi-Jian. 2016

[11]Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Hevea brasiliensis Muell. Arg.. Chen, Yue-Yi,Wang, Li-Feng,Dai, Long-Jun,Yang, Shu-Guang,Tian, Wei-Min,Chen, Yue-Yi.

[12]The small RNA profile in latex from Hevea brasiliensis trees is affected by tapping panel dryness. Gebelin, Virginie,Leclercq, Julie,Argout, Xavier,Sarah, Gautier,Montoro, Pascal,Kuswanhadi,Chaidamsari, Tetty,Hu, Songnian,Yang, Meng,Tang, Chaorong. 2013

[13]Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. She, Fenghua,Wang, Jin,An, Feng,Lin, Weifu,Zhu, Deming,She, Fenghua,Kong, Lingxue,An, Feng. 2013

[14]Characterization of Sugar Contents and Sucrose Metabolizing Enzymes in Developing Leaves of Hevea brasiliensis. Zhu, Jinheng,Qi, Jiyan,Fang, Yongjun,Xiao, Xiaohu,Lan, Jixian,Tang, Chaorong,Zhu, Jinheng,Lan, Jixian,Tang, Chaorong,Li, Jiuhui. 2018

[15]Next-generation sequencing, assembly, and comparative analyses of the latex transcriptomes from two elite Hevea brasiliensis varieties. Li, Dejun,Liu, Hui,Zhao, Manman,Deng, Zhi,Li, Yu,Zeng, Rizhong,Tian, Weimin,Hao, Lili,Zhao, Manman. 2015

[16]Proteome analysis of interaction between rootstocks and scions in Hevea brasiliensis. Yuan, Kun,Yang, Li-Fu,Wang, Zhen-Hui,Lin, Wei-Fu,Cao, Jian-Hua,Yuan, Kun,Yang, Li-Fu,Wang, Zhen-Hui,Lin, Wei-Fu,Cao, Jian-Hua,Ding, Xuan. 2011

[17]Regulation of MIR Genes in Response to Abiotic Stress in Hevea brasiliensis. Gebelin, Virginie,Leclercq, Julie,Montoro, Pascal,Hu, Songnian,Tang, Chaorong. 2013

[18]Identification, Functional Study, and Promoter Analysis of HbMFT1, a Homolog of MFT from Rubber Tree (Hevea brasiliensis). Bi, Zhenghong,Bi, Zhenghong,Huang, Huasun,Hua, Yuwei,Li, Xiang. 2016

[19]Molecular cloning and characterization of S-adenosylmethionine decarboxylase gene in rubber tree (Hevea brasiliensis). Zhao, Manman,Liu, Hui,Deng, Zhi,Chen, Jiangshu,Yang, Hong,Li, Dejun,Zhao, Manman,Li, Huiping,Xia, Zhihui.

[20]Development, characterization, genetic diversity and cross-species/genera transferability of ILP markers in rubber tree (Hevea brasiliensis). Li, Dejun,Deng, Zhi,Xia, Zhihui,Liu, Xianghong,Feng, Fuying.

作者其他论文 更多>>