您好,欢迎访问中国热带农业科学院 机构知识库!

Tolerance of banana for fusarium wilt is associated with early H2O2 accumulation in the roots

文献类型: 外文期刊

作者: Li, Wei-Ming 1 ; Qian, Chun-Mei 2 ; Mo, Yi-Wei 1 ; Hu, Yu-Lin 1 ; Xie, Jiang-Hui 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, S Subtrop Crops Reserch Inst, Zhanjiang 524091, Peoples R China

2.S China Agr Univ, Coll Lifesci, Guangzhou 510642, Guangdong, Peoples R China

关键词: Banana;Fusarium oxysporum;catalase;reactive oxygen species;somaclonal variation;disease resistance

期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )

ISSN: 1684-5315

年卷期: 2011 年 10 卷 55 期

页码:

收录情况: SCI

摘要: Banana plants derived from a tissue culture process possess a high rate of random variations that were widely used as popular cultivars due to the new desired traits. In this study, two near-isogenic lines, one susceptible (parental Williams-8818) and the other resistant (somaclonal variation progeny Williams-8818-1 from Williams-8818) to Fusarium oxysporum f. sp. Cubense (Foc4), were inoculated with race 4 of F. oxysporum (Fox). Production of O-2(center dot-), H2O2 and MDA, as well as changes in enzyme activities, and transcript levels of SOD and CAT in root extracts were monitored every 24 h over 4 days. The histochemical location of H2O2 was also detected. In the resistant iso-line, the accumulation of O-2(center dot-) and H2O2, and the activation of SOD occurred in the first 24 h, but activation of CAT reached its maximum only after 48 h. All changes were generally lower in the susceptible iso-line when compared to the resistant iso-line. SOD transcripts were further up-regulated until 72 h in the resistant iso-line, but not in the susceptible iso-line. CAT expression was not affected in any of the two iso-lines. This suggests that expressions of the two key genes in the antioxidant system are less suitable indicators for Foc resistance in banana. In contrast, the first "oxidative burst" is a better indicator for different susceptibility of banana to Foc.

  • 相关文献

[1]Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Guo, Lijia,Yang, Laying,Huang, Junsheng,Qi, Xingzhu,Guo, Lijia,Yang, Laying,Huang, Junsheng.

[2]Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae. Zhu, Xiangfei,Wang, Aiping,Zhu, Shijiang,Zhang, Lubin,Zhang, Lubin. 2011

[3]Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Zhuo,Jia, Caihong,Huang, Suzhen,Xu, Biyu,Jin, Zhiqiang,Li, Jingyang,Jin, Zhiqiang.

[4]Resistance sources to Fusarium oxysporum f. sp cubense tropical race 4 in banana wild relatives. Li, W. M.,Hu, G. B.,Li, W. M.,Wu, W.,Ge, X. J.,Li, W. M.,Xie, J. H.,Dita, M.,Dita, M..

[5]香草兰根(茎)腐病病原菌鉴定及其致病性测定. 高圣风,刘爱勤,桑利伟,孙世伟,苟亚峰. 2015

[6]Methyl jasmonate induced defense responses increase resistance to Fusarium oxysporum f. sp cubense race 4 in banana. Sun, Dequan,Lu, Xinhua,Hu, Yulin,Li, Weiming,Hong, Keqian,Xie, Jianghui,Mo, Yiwei,Cahill, David M.. 2013

[7]New Fusaric Acid Derivatives from the Endophytic Fungus Fusarium oxysporum and Their Phytotoxicity to Barley Leaves. Liu, Shuai,Liu, Zhen,Proksch, Peter,Da, Haofu,Orfali, Raha S.,Lin, Wenhan.

[8]Isolation and Expression Analysis of Catalase Genes in Erianthus arundinaceus and Sugarcane. Liu, Yang,Hu, Xiaowen,Yao, Yanli,Xu, Lei,Xing, Shulian. 2016

[9]Cloning and allelic variation of two novel catalase genes (SoCAT-1 and SsCAT-1) in Saccharum officinarum L. and Saccharum spontaneum L.. Liu, Yang,Yao, Yanli,Hu, Xiaowen,Xing, Shulian,Xu, Lei,Liu, Yang.

[10]Differential responses of lipid peroxidation and antioxidants in Alternanthera philoxeroides and Oryza sativa subjected to drought stress. Gao, Jianming,Xiao, Qiang,Ding, Liping,Chen, Mingjie,Yin, Liang,Li, Jinzhi,Zhou, Shiyi,He, Guangyuan,Gao, Jianming.

[11]Enhanced preservation effects of sugar apple fruits by salicylic acid treatment during post-harvest storage. Mo, Yiwei,Gong, Deqiang,Xie, Jianghui,Li, Weicai,Liang, Guobin,Han, Ruihong.

[12]RAPD analysis of 33 varieties of banana. Su, J,Zhou, P,Zheng, XQ,Huang, BZ,Li, FN. 2001

[13]The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. Liao, Fen,Cui, Sufen,Zhang, Ezhen,Huang, Maokang,He, Quanguang,Hong, Keqian,Zou, Ru. 2014

[14]Responses of Soil Nematode Abundance and Diversity to Long-Term Crop Rotations in Tropical China. Zhong Shuang,Jim Zhiqiang,Zhong Shuang,Zeng Huicai. 2015

[15]The Key Technology Research on Automatic Monitoring and Remote Controlling of Water and Fertilizer on Banana. Wang, Lingling,Luo, Hongxia,Fang, Jihua,Wang, Lingling,Luo, Hongxia,Fang, Jihua. 2015

[16]Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Z.,Li, J.,Jia, C.,Xu, B.,Jin, Z.,Jin, Z..

[17]The effects of different disease-resistant cultivars of banana on rhizosphere microbial communities and enzyme activities. Sun, Jianbo,Peng, Ming,Wang, Yuguang,Li, Wenbin,Xia, Qiyu.

[18]Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress. Miao, Hongxia,Wang, Yuan,Liu, Juhua,Jia, Caihong,Hu, Wei,Xu, Biyu,Sun, Peiguang,Jin, Zhiqiang. 2014

[19]Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Dong, Chen,Hu, Huigang,Xie, Jianghui,Dong, Chen,Hu, Huigang,Xie, Jianghui.

[20]Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas. Lu, Y.,Li, H. P.,Lu, Y.,Xie, Y. X.,Zhang, X.,Pu, J. J.,Qi, Y. X.,Xu, W. H.. 2011

作者其他论文 更多>>