您好,欢迎访问中国热带农业科学院 机构知识库!

Expression of ACO1, ERS1 and ERF1 genes in harvested bananas in relation to heat-induced defense against Colletotrichum musae

文献类型: 外文期刊

作者: Zhu, Xiangfei 1 ; Wang, Aiping 1 ; Zhu, Shijiang 1 ; Zhang, Lubin 1 ;

作者机构: 1.S China Agr Univ, Coll Hort, Guangdong Prov Key Lab Postharvest Physiol & Tech, Guangzhou 510642, Guangdong, Peoples R China

2.Chinese Acad Trop Agr Sci, S Subtrop Crops Res Inst, Hainan Key Lab Postharvest Physiol & Technol Trop, Zhanjiang 524091, Guangdong, Peoples R China

关键词: Banana;Heat treatment;Ethylene signaling;Gene expression;Disease resistance

期刊名称:JOURNAL OF PLANT PHYSIOLOGY ( 影响因子:3.549; 五年影响因子:4.164 )

ISSN: 0176-1617

年卷期: 2011 年 168 卷 14 期

页码:

收录情况: SCI

摘要: The aim of this study was to investigate the connection between heat-induced ethylene signal changes and enhanced disease resistance. Heat enhanced ripening and elevated MaACO1 expression in naturally ripened bananas (NRB), while it delayed ripening and reduced MaACO/expression in the ethephontreated bananas (ETB). However, in both cases, heat reduced lesion sizes infected by Colletotrichum musae. This indicates that heat-induced disease resistance in bananas was independent of ripening rate. The expression of MOERS1 gene was inhibited by heat treatment in both NRB and ETB, implying that heat as a physical signal could be sensed by banana fruits through the inhibition of ethylene receptor gene expression. The intensity of MaERF1 transcript signals was elevated in heated bananas, suggesting that the enhanced accumulation of MaERF1 transcript following heat treatment could play an important role in activation of the defense system. In ETB, inhibition ofJA biosynthesis by application of IBU downregulated the expression of MaERFand significantly weakened disease resistance, suggesting involvement of endogenous JA in induction of the gene expression, which was reconfirmed by the fact that exposure to exogenous MeJA following the combination of heat plus IBU treatment restored part of the gene expression. On the other hand, in NRB, application of IBU elevated level of MaERF1 expression at 24 h and enhanced disease resistance, suggesting that, when banana was not exposed to ethephon, the expression of MaERF1 gene was not JA dependent, which was verified by the fact that MeJA application did not enhance MaERF1 gene expression. In conclusion, heat-induced disease resistance in harvested bananas could involve down-regulation of MaERS1 expression and up-regulation of MaERF1 expression and JA pathway could be involved in heat activation of the defense system in bananas exposed to ethephon. (C) 2011 Elsevier GmbH. All rights reserved.

  • 相关文献

[1]Tolerance of banana for fusarium wilt is associated with early H2O2 accumulation in the roots. Li, Wei-Ming,Mo, Yi-Wei,Hu, Yu-Lin,Xie, Jiang-Hui,Qian, Chun-Mei. 2011

[2]Activation of salicylic acid metabolism and signal transduction can enhance resistance to Fusarium wilt in banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Zhuo,Jia, Caihong,Huang, Suzhen,Xu, Biyu,Jin, Zhiqiang,Li, Jingyang,Jin, Zhiqiang.

[3]Resistance sources to Fusarium oxysporum f. sp cubense tropical race 4 in banana wild relatives. Li, W. M.,Hu, G. B.,Li, W. M.,Wu, W.,Ge, X. J.,Li, W. M.,Xie, J. H.,Dita, M.,Dita, M..

[4]Molecular cloning and expression analysis of eight calcium-dependent protein kinase (CDPK) genes from banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Z.,Li, J.,Jia, C.,Xu, B.,Jin, Z.,Jin, Z..

[5]Genome-Wide Identification, Phylogeny, and Expression Analyses of the 14-3-3 Family Reveal Their Involvement in the Development, Ripening, and Abiotic Stress Response in Banana. Li, Meiying,Xu, Biyu,Yang, Xiaoliang,Xia, Qiyu,He, Pingping,Xiao, Susheng,Guo, Anping,Hu, Wei,Jin, Zhiqiang,Ren, Licheng,Jin, Zhiqiang. 2016

[6]The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Hu, Wei,Yan, Yan,Liu, Juhua,Miao, Hongxia,Tie, Weiwei,Ding, Zehong,Ding, XuPo,Wu, Chunlai,Liu, Yang,Xu, Biyu,Jin, Zhiqiang,Wang, Jiashui,Jin, Zhiqiang,Shi, Haitao. 2017

[7]Molecular cloning and expression of five glutathione S-transferase (GST) genes from Banana (Musa acuminata L. AAA group, cv. Cavendish). Wang, Zhuo,Huang, Suzhen,Jia, Caihong,Liu, Juhua,Zhang, Jianbin,Xu, Biyu,Jin, Zhiqiang. 2013

[8]Identification of six mitogen-activated protein kinase (MAPK) genes in banana (Musa acuminata L. AAA group, cv. Cavendish) under infection of Fusarium Oxysporum f. sp cubense Tropical Race 4. Wang, Zhuo,Jia, Caihong,Li, Jianpin,Xu, Biyu,Jin, Zhiqiang,Jin, Zhiqiang.

[9]Molecular cloning and expression of four phenylalanine ammonia lyase genes from banana interacting with Fusarium oxysporum. Wang, Z.,Jia, C. -H.,Li, J. -P.,Xu, B. -Y.,Jin, Z. -Q.,Li, J. -Y.,Jin, Z. -Q..

[10]Adsorption and Dilatational Rheology of Heat-Treated Soy Protein at the Oil-Water Interface: Relationship to Structural Properties. Wang, Jin-Mei,Xia, Ning,Yang, Xiao-Quan,Yin, Shou-Wei,Qi, Jun-Ru,He, Xiu-Ting,Wang, Li-Juan,Xia, Ning,Yuan, De-Bao,Wang, Li-Juan.

[11]RAPD analysis of 33 varieties of banana. Su, J,Zhou, P,Zheng, XQ,Huang, BZ,Li, FN. 2001

[12]The role of jasmonic acid and lipoxygenase in propylene-induced chilling tolerance on banana fruit. Liao, Fen,Cui, Sufen,Zhang, Ezhen,Huang, Maokang,He, Quanguang,Hong, Keqian,Zou, Ru. 2014

[13]Responses of Soil Nematode Abundance and Diversity to Long-Term Crop Rotations in Tropical China. Zhong Shuang,Jim Zhiqiang,Zhong Shuang,Zeng Huicai. 2015

[14]The Key Technology Research on Automatic Monitoring and Remote Controlling of Water and Fertilizer on Banana. Wang, Lingling,Luo, Hongxia,Fang, Jihua,Wang, Lingling,Luo, Hongxia,Fang, Jihua. 2015

[15]The effects of different disease-resistant cultivars of banana on rhizosphere microbial communities and enzyme activities. Sun, Jianbo,Peng, Ming,Wang, Yuguang,Li, Wenbin,Xia, Qiyu.

[16]Molecular cloning and expression analysis of the MaASR1 gene in banana and functional characterization under salt stress. Miao, Hongxia,Wang, Yuan,Liu, Juhua,Jia, Caihong,Hu, Wei,Xu, Biyu,Sun, Peiguang,Jin, Zhiqiang. 2014

[17]Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Dong, Chen,Hu, Huigang,Xie, Jianghui,Dong, Chen,Hu, Huigang,Xie, Jianghui.

[18]Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas. Lu, Y.,Li, H. P.,Lu, Y.,Xie, Y. X.,Zhang, X.,Pu, J. J.,Qi, Y. X.,Xu, W. H.. 2011

[19]Analysis of Soluble Ca Content in Banana Pulp Based on Pretreatment of Digestion Model in Vitro. Li Ji-hua,Huang Mao-fang,Tang Yong-fu,Fu Tiao-kun,Li Ji-hua,Huang Mao-fang,Tang Yong-fu,Li Ji-hua,Huang Mao-fang,Xu Fei. 2010

[20]Research on the Antioxidant Activity of Phenols and Active Oxygen Metabolism during Development of Brazil Banana. Hu, Hui-Gang,Hu, Hui-Gang. 2013

作者其他论文 更多>>