您好,欢迎访问中国热带农业科学院 机构知识库!

Cloning and molecular characterization of a copper chaperone gene (HbCCH1) from Hevea brasiliensis

文献类型: 外文期刊

作者: Li, Hui-Liang 1 ; Guo, Dong 1 ; Tian, Wei-Min 2 ; Peng, Shi-Qing 1 ;

作者机构: 1.Chinese Acad Trop Agr Sci, Key Lab Trop Crop Biotechnol, Minist Agr, Inst Trop Biosci & Biotechnol, Haikou 571101, Peoples R China

2.Chinese Acad Trop Agr Sci, Key Lab Rubber Biol, Minist Agr, Inst Rubber, Danzhou 571737, Peoples R China

关键词: Copper chaperone;Hevea brasiliensis;latex

期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )

ISSN: 1684-5315

年卷期: 2011 年 10 卷 28 期

页码:

收录情况: SCI

摘要: The cDNA encoding a copper chaperone, designated as HbCCH1, was isolated from Hevea brasiliensis. HbCC1 was 589 bp long containing a 261 bp open reading frame encoding a putative protein of 86 amino acids, flanked by a 103 bp 5'UTR and a 225 bp 3'UTR. The predicted molecular mass of HbCCH1 was 9.2 kDa, with an isoelectric point (pI) of 5.13. The HbCCH1 share the conserved N-terminal metal-binding domain (MXCXXC) and a lysine-rich C-terminus. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis revealed that HbCCH1 was constitutively expressed in all the tested tissues. HbCCH1 transcripts were accumulated at relatively low levels in the flower, bud and leaves, while HbCCH1 transcripts were accumulated at relatively high levels in the latex. The transcription of HbCCH1 in the latex was induced by jasmonate.

  • 相关文献

[1]A convenient and efficient protocol for isolating high-quality RNA from latex of Hevea brasiliensis (para rubber tree). Tang, Chaorong,Qi, Jiyan,Li, Heping,Zhang, Cunliang,Wang, Yuekun. 2007

[2]Molecular characterization and expression analysis of cDNAs encoding four Rab and two Arf GTPases in the latex of Hevea brasiliensis. Qin, Yunxia,Shi, Feng,Tang, Chaorong,Qin, Yunxia,Shi, Feng,Tang, Chaorong,Shi, Feng.

[3]Ultrasound-assisted tapping of latex from Para rubber tree Hevea brasiliensis. She, Fenghua,Wang, Jin,An, Feng,Lin, Weifu,Zhu, Deming,She, Fenghua,Kong, Lingxue,An, Feng. 2013

[4]Comparative Transcriptome Analysis of Latex Reveals Molecular Mechanisms Underlying Increased Rubber Yield in Hevea brasiliensis Self-Rooting Juvenile Clones. Li, Hui-Liang,Guo, Dong,Zhu, Jia-Hong,Wang, Ying,Chen, Xiong-Ting,Peng, Shi-Qing. 2016

[5]Molecular characterization and expression analysis of two farnesyl pyrophosphate synthase genes involved in rubber biosynthesis in Hevea brasiliensis. Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong,Wu, Chuntai,Sun, Lina,Li, Yu,Zeng, Rizhong. 2017

[6]Cloning and molecular characterization of a cDNA encoding a small GTPase from Hevea brasiliensis. Li, H. L.,Guo, D.,Peng, S. Q.,Tian, W. M.. 2013

[7]Histochemical and immunohistochemical identification of laticifer cells in callus cultures derived from anthers of Hevea brasiliensis. Tan, Deguan,Sun, Xuepiao,Zhang, Jiaming. 2011

[8]Molecular cloning and expression analysis of the mevalonate diphosphate decarboxylase gene from the latex of Hevea brasiliensis. Wu, Chuntai,Li, Yu,Nie, Zhiyi,Dai, Longjun,Kang, Guijuan,Zeng, Rizhong,Wu, Chuntai,Li, Yu,Nie, Zhiyi,Dai, Longjun,Kang, Guijuan,Zeng, Rizhong.

[9]Isolation and expression analysis of four members of the plasma membrane H+-ATPase gene family in Hevea brasiliensis. Zhu, Jiahong,Chang, Wenjun,Xu, Jing,Zhang, Zhili.

[10]Molecular characterization of a thioredoxin h gene (HbTRX1) from Hevea brasiliensis showing differential expression in latex between self-rooting juvenile clones and donor clones. Li, Hui-Liang,Lu, Hui-Zhong,Guo, Dong,Peng, Shi-Qing,Tian, Wei-Min.

[11]A Silver-Staining cDNA-AFLP Protocol Suitable for Transcript Profiling in the Latex of Hevea brasiliensis (Para Rubber Tree). Xiao, Xiaohu,Li, Heping,Tang, Chaorong,Xiao, Xiaohu,Li, Heping.

[12]Comparative proteomic analysis of latex from Hevea brasiliensis treated with Ethrel and methyl jasmonate using iTRAQ-coupled two-dimensional LC-MS/MS. Zeng, Rizhong.

[13]Ethephon Increases Rubber Tree Latex Yield by Regulating Aquaporins and Alleviating the Tapping-Induced Local Increase in Latex Total Solid Content. An, Feng,Xie, Guishui,Zou, Zhi,An, Feng,Kong, Lingxue,Rookes, James,Cahill, David,Cai, Xiuqing.

[14]橡胶间种百香果的不同栽培模式探讨. 吴斌,杨其军,朱文彬,黄东梅,马伏宁,詹儒林,蒋雄英,宋顺. 2021

[15]Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. Pirrello, Julien,Leclercq, Julie,Dessailly, Florence,Rio, Maryannick,Piyatrakul, Piyanuch,Montoro, Pascal,Piyatrakul, Piyanuch,Kuswanhadi, Kuswanhadi,Tang, Chaorong. 2014

[16]Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization. Peng, Zheng,Kong, Ling Xue,Li, Si-Dong,Chen, Yin,Huang, Mao Fang. 2007

[17]Processing characteristics and thermal stabilities of gel and sol of epoxidized natural rubber. Yu, Heping,Zeng, Zongqiang,Lu, Guang,Wang, Qifang.

[18]Effects of coagulation processes on properties of epoxidized natural rubber. Zeng Zong-Qiang,Yu He-Ping,Wang Qi-Fang,Guang, Lu.

[19]Thermooxidative degradation of natural rubber/clay composite. Chen, M,Ao, NJ,Liao, YY,Chen, Y,Zhou, HL.

[20]Protein differential expression in the latex from Hevea brasiliensis between self-rooting juvenile clones and donor clones. Li, Hui-Liang,Guo, Dong,Lan, Fang-Ying,Peng, Shi-Qing,Tian, Wei-Min.

作者其他论文 更多>>