Cloning and expression of pineapple sucrose-phosphate synthase gene during fruit development
文献类型: 外文期刊
作者: Zhang, Xiumei 1 ; Du, Liqing 1 ; Xie, Jianghui 1 ; Dou, Mei'an 1 ; Wang, Wei; Mo, Yiwei 1 ; Sun, Guangming 1 ;
作者机构: 1.Chinese Acad Trop Agr Sci, S Subtrop Crop Res Inst, Zhanjiang 524091, Peoples R China
2.S China Agr Univ, Coll Hort, Guangzhou 510642, Guangdong, Peoples R China
3.Natl Ctr Important Trop Engn & Technol Res, Haikou 571101, Peoples R China
4.Natl Ctr Important Trop Engn & Technol Res, Hai
关键词: Pineapple fruit;sucrose phosphate synthase;gene cloning;expression
期刊名称:AFRICAN JOURNAL OF BIOTECHNOLOGY ( 影响因子:0.573; 五年影响因子:0.794 )
ISSN: 1684-5315
年卷期: 2010 年 9 卷 49 期
页码:
收录情况: SCI
摘要: A 1132-base pairs (bp) polymerase-chain-reaction product of sucrose-phosphate synthase (SPS) (EC 2.3.1.14) from pineapple (Ananas comosus cv. Comte de paris) fruit was cloned and nominated as Ac-SPS1. The sequence encodes a putative 377 amino acids protein containing two serine conserved features that had been found in other plant SPS genes: the presence of a 14-3-3 protein special binding domain and an activated site of osmosis stress, which can been activated by phosphorylation and dephosphorylation. The Neighbour-joining tree revealed that Ac-SPS1 belonged to the first kind of sucrose phosphate synthase gene. The results indicated that, the Ac-SPS1 expression was low in the earlier period of fruit growth, then, increasing from 20 days after anthesis and gradually a falling on 40 days, reached the peak with the highest value around 70 days. The SPS activity and sucrose content reached their maximum 80 days after anthesis. It proved that the accumulation of sucrose was correlated with SPS activity and mRNA content and it maximally occurred at 10 d after SPS mRNA and activity had reached its maxima. These results indicated that Ac-SPS1 gene played a key role in sucrose accumulation during the pineapple fruit development and transcriptional activation with increase in Ac-SPS1 expression might be important regulatory events of sugar during pineapple fruit maturation.
- 相关文献
作者其他论文 更多>>
-
Genome-wide identification of Saccharum Sec14-like PITP gene family reveals that ScSEC14-1 is positively involved in disease resistance
作者:Su, Yachun;Feng, Jingfang;You, Chuihuai;Zang, Shoujian;Wang, Wei;Wang, Dongjiao;Mao, Huaying;Chen, Yao;Luo, Jun;Que, Youxiong;Su, Yachun;Su, Yachun;Sun, Tingting;Que, Youxiong
关键词:Sugarcane; Phosphatidylinositol transfer protein (PITP); Genome-wide identification; Pathogen infection; Disease resistance
-
Biocontrol mechanism of Bacillus siamensis sp. QN2MO-1 against tomato fusarium wilt disease during fruit postharvest and planting
作者:Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Miaoyi;Li, Xiaojuan;Qi, Dengfeng;Zhou, Dengbo;Chen, Yufeng;Feng, Junting;Wei, Yongzan;Zhao, Yankun;Li, Kai;Wang, Wei;Xie, Jianghui;Zhang, Lu;Pan, Yongbo
关键词:Bacillus siamensis; Tomato fusarium wilt; Biological control; Whole genome sequencing
-
Water-Retaining Agent as a Sustainable Agricultural Technique to Enhance Mango (Mangifera indica L.) Productivity in Tropical Soils
作者:Zang, Xiaoping;Yun, Tianyan;Wang, Lixia;Ding, Zheli;Eissa, Mamdouh A.;Jing, Tao;Liu, Yongxia;Xie, Jianghui;He, Yingdui;Zhan, Rulin;Ma, Weihong;Eissa, Mamdouh A.
关键词:modern irrigation; fertigation; nutritional value; economic benefit; soil nutrients
-
Sugarcane transcription factor ScWRKY4 negatively regulates resistance to pathogen infection through the JA signaling pathway
作者:Wang, Dongjiao;Wang, Wei;Zang, Shoujian;Qin, Liqian;Liang, Yanlan;Lin, Peixia;Su, Yachun;Que, Youxiong;Que, Youxiong
关键词:Disease resistance; Expression profile; Transcriptome analysis; WRKY transcription factors
-
Genome-wide investigation of sucrose synthase gene family in pineapple: Characterization and expression profile analysis during fruit development
作者:Wu, Jianyang;Chen, Mei;Yao, Yanli;Zhang, Xiumei;Chen, Mei;Yao, Yanli;Zhang, Xiumei;Chen, Mei;Yao, Yanli;Zhang, Xiumei;Zhang, Xiumei
关键词:Pineapple (Ananas comosus); sucrose content; sucrose synthase; enzyme activity; gene family; gene expression
-
In Vitro Propagation Technology for the Endangered Aquatic Species Nymphoides coronata
作者:Lin, Fei;Kang, Yong;Li, Yamei;Guo, Yuhua;Yang, Guangsui;Yin, Junmei;Tang, Fenling;Lin, Fei;Eissa, Mamdouh A.;Wang, Wei;Yin, Junmei;Eissa, Mamdouh A.
关键词:tissue culture; Nymphoides; plant growth regulators; 6-BA; IAA; NAA
-
Physiological and Transcriptional Characteristics of Banana Seedlings in Response to Nitrogen Deficiency Stress
作者:Zhao, Lei;Zhang, Bencheng;Zhao, Lei;Cai, Bingyu;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan;Zhao, Lei;Cai, Bingyu;Zhang, Xiaohan;Zhang, Bencheng;Feng, Junting;Zhou, Dengbo;Chen, Yufeng;Zhang, Miaoyi;Qi, Dengfeng;Wang, Wei;Xie, Jianghui;Wei, Yongzan
关键词:banana; nitrogen deficiency; photosynthetic parameters; transcription level; phytohormone