您好,欢迎访问福建省农业科学院 机构知识库!

Abundance and Community Composition of Ammonia-Oxidizers in Paddy Soil at Different Nitrogen Fertilizer Rates

文献类型: 外文期刊

作者: Song Ya-na 1 ; Lin Zhi-min 1 ;

作者机构: 1.Fujian Acad Agr Sci, Inst Biol Technol, Fuzhou 350003, Peoples R China

关键词: ammonia-oxidizing bacteria;ammonia-oxidizing archaea;nitrogen fertilizer rates;paddy soil

期刊名称:JOURNAL OF INTEGRATIVE AGRICULTURE ( 影响因子:2.848; 五年影响因子:2.979 )

ISSN: 2095-3119

年卷期: 2014 年 13 卷 4 期

页码:

收录情况: SCI

摘要: Ammonia oxidation, the first and rate-limiting step of nitrification, is carried out by both ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). However, the relative importance of AOB and AOA to nitrification in terrestrial ecosystems is not well understood. The aim of this study was to investigate the effect of the nitrogen input amount on abundance and community composition of AOB and AOA in red paddy soil. Soil samples of 10-20 cm (root layer soil) and 0-5 cm (surface soil) depths were taken from a red paddy. Rice in the paddy was fertilized with different rates of N as urea of N1 (75 kg N ha(-1) yr(-1)), N2 (150 kg N ha(-1) yr(-1)), N3 (225 kg N ha(-1) yr(-1)) and CK (without fertilizers) in 2009, 2010 and 2011. Abundance and community composition of ammonia oxidizers was analyzed by real-time PCR and denaturing gradient gel electrophoresis (DGGE) based on arnoA (the unit A of ammonia monooxygenase) gene. Archaeal amoA copies in N3 and N2 were significantly (P<0.05) higher than those in CK and N1 in root layer soil or in surface soil under tillering and heading stages of rice, while the enhancement in bacterial amoA gene copies with increasing of N fertilizer rates only took on in root layer soil. N availability and soil NO3--N content increased but soil NH4+-N content didn't change with increasing of N fertilizer rates. Otherwise, the copy numbers of archaeal amoA gene were higher (P<0.05) than those of bacterial amoA gene in root lary soil or in surface soil. Redundancy discriminate analysis based on DGGE bands showed that there were no obvious differs in composition of AOA or AOB communities in the field among different N fertilizer rates. Results of this study suggested that the abundance of ammonia-oxidizers had active response to N fertilizer rates and the response of AOA was more obvious than that of AOB. Similarity in the community composition of AOA or AOB among different N fertilizer rates indicate that the community composition of ammonia-oxidizers was relatively stable in the paddy soil at least in short term for three years.

  • 相关文献

[1]Community composition of ammonia-oxidizing bacteria in the rhizosphere of intercropped wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Song, Y. N.,Marschner, P.,Li, L.,Bao, X. G.,Sun, J. H.,Zhang, F. S.. 2007

[2]Phosphorus availability and rice grain yield in a paddy soil in response to long-term fertilization. Lan, Z. M.,Lin, X. J.,Wang, F.,Zhang, H.,Lan, Z. M.,Chen, C. R..

作者其他论文 更多>>