您好,欢迎访问黑龙江省农业科学院 机构知识库!

Analysis of the APX Gene Expressed in Soybean Infected by Heterodera glycines and Coated with Biocontrol Bacteria Sneb545

文献类型: 外文期刊

作者: Xiang, Peng 1 ; Zhu, Feng 2 ; Chen, Jingsheng 2 ; Li, Hongpeng 1 ; Lu, Wencheng 1 ; Li, Baohua 1 ; Chen, Lijie 2 ; Duan, 1 ;

作者机构: 1.Heilongjiang Acad Agr Sci, Heihe Branch, Heihe, Peoples R China

2.Shenyang Agr Univ, Nematol Inst Northern China, Shenyang, Peoples R China

3.Heilongjiang Acad Agr Sci, Daqing Branch, Daqing, Peoples R China

关键词: ascorbate peroxidase;Heterodera glycines;real time PCR;soybean;soybean cyst nematode

期刊名称:PHILIPPINE AGRICULTURAL SCIENTIST ( 影响因子:0.25; 五年影响因子:0.388 )

ISSN: 0031-7454

年卷期: 2016 年 99 卷 4 期

页码:

收录情况: SCI

摘要: The response of ascorbate peroxidase (APX) gene to nematode (Heterodera glycines) infection was studied in roots of soybean cultivars - the susceptible Liaodou 15 and Liaodou 15 coated with bio-. control bacteria Sneb545. The expression profile of APX in coated Liaodou 15 infected with H. glycines, which generates oxidative stress, was analyzed. Real time PCR analysis was carried out with root extracts of infected plants 4, 7, 11, and 14 d after nematode inoculation and using uninfected roots as control. PCR analysis revealed that APX mRNA levels increased from 1.08- to 1.46-fold after exposure to H. glycines from 4 to 7 d, and decreased to 0.87- and 0.92-fold from 11 to 14 d compared with the non inoculated control. These results suggest that the APX gene was induced by H. glycines at an early stage in soybean roots and may play an important role in removing oxidative damage.

  • 相关文献

[1]Effects on Trypsin Inhibitor in Roots of Resistant Soybeans after Heterodera glycines Invasion. Liu Dawei,Yang Shaoxu,Chen Lijie,Duan Yuxi,Chen Jingsheng. 2016

[2]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang. 2005

[3]Cloning and Analyzing of Disease Resistance Gene Analogs from Soybean. LIU Jie,LIU Li-jun,WU Jun-jiang,CHEN Yi-li,LI Kang,ZHANG Cheng-liang,中国科学院文献情报中心; 中国生物技术发展中心; 中国生物工程学会;. 2005

[4]Geographical distribution of GmTfl1 alleles in Chinese soybean varieties. Liu, Guifeng,Zhao, Lin,Qiu, Lijuan,Liu, Ying,Chang, Ruzhen,Guan, Rongxia,Qiu, Lijuan,Averitt, Benjamin J.,Zhang, Bo,Ma, Yansong,Luan, Xiaoyan. 2015

[5]Stability of growth periods traits for soybean cultivars across multiple locations. Liu Zhang-xiong,Chang Ru-zhen,Qiu Li-juan,Wang Xiao-bo,Yang Chun-yan,Xu Ran,Zhang Li-feng,Lu Wei-guo,Wang Qian,Wei Su-hong,Yang Chun-ming,Wang Hui-cai,Wang Rui-zhen,Zhou Rong,Chen Huai-zhu. 2016

[6]Flavor characteristic analysis of soymilk prepared by different soybean cultivars and establishment of evaluation method of soybean cultivars suitable for soymilk processing. Shi Xiaodi,Li Jingyan,Guo Shuntang,Wang Shuming,Zhang Lei,Qiu Lijuan,Han Tianfu,Wang Qianyu,Chang Sam Kow-Ching.

[7]QTL effects and epistatic interaction for flowering time and branch number in a soybean mapping population of JapanesexChinese cultivars. Yang Guang,Xie Fu-ti,Zhai Hong,Wu Hong-yan,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Hu Bo,Wang Lu,Xia Zheng-jun,Zhang Xing-zheng,Wang Ya-ying,Li Yu-qiu,Wang Lu,Yang Guang,Lu Shi-xiang,Wen Zi-xiang,Wang De-chun,Wang Shao-dong,Harada, Kyuya. 2017

[8]GmFW1 expression decreased in GmSymRK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei,Jiao, Yongqing.

[9]The relation between C-4 pathway enzymes and PSII photochemical function in soybean. Li, WH,Lu, QT,Hao, NB,Ge, QY,Zhang, QD,Jiang, GM,Du, WG,Kuang, TY. 2000

[10]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[11]Pathogenicity of Pythium species causing seed rot and damping-off in soybean under controlled conditions. Xue, Allen G.,Cober, Elroy R.,Babcock, Carolyn,Zhang, Jinxiu,Wei, Lai,Zhang, Shuzhen,Li, Wenbin,Wu, Junjiang,Liu, Lijun. 2010

[12]Temporospatial Characterization of Nutritional and Bioactive Components of Soybean Cultivars in China. Wu, Tingting,Yao, Yang,Sun, Shi,Wang, Caijie,Song, Wenwen,Wu, Cunxiang,Jiang, Bingjun,Hou, Wensheng,Ren, Guixing,Han, Tianfu,Jia, Hongchang,Man, Weiqun,Fu, Lianshun.

[13]Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Gu, Yongzhe,Wang, Yan,Gao, Huihui,He, Chaoying,Gu, Yongzhe,Gao, Huihui,He, Chaoying,Li, Wei,Liu, Miao,Lai, Yongcai,Jiang, Hongwei,Chen, Qingshan.

[14]Detecting SNPs underlying domestication-related traits in soybean. Li, Ying-Hui,Ma, Yan-Song,Chang, Ru-Zhen,Qiu, Li-Juan,Reif, Jochen C.,Jackson, Scott A.,Ma, Yan-Song. 2014

[15]Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. Zhong, Chao,Sun, Suli,Duan, Canxing,Zhu, Zhendong,Yao, Liangliang,Ding, Junjie. 2018

[16]Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Zhang, Wen-Bo,Jiang, Hong-wei,Liu, Chun-Yan,Hu, Guo-Hua,Zhang, Wen-Bo,Jiang, Hong-wei,Xin, Da-Wei,Chen, Qing-Shan,Hu, Guo-Hua,Li, Can-Dong,Zhang, Wen-Bo,Qiu, Peng-Cheng,Chen, Fei-Long. 2012

[17]QTL analysis of soybean oil content under 17 environments. Qi, Zhaoming,Hou, Meng,Xin, Dawei,Wang, Zhongyu,Zhu, Rongsheng,Hu, Zhenbang,Chen, Qingshan,Han, Xue,Jiang, Hongwei,Liu, Chunyan,Hu, Guohua,Li, Candong. 2014

[18]Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance. Wu, X. X.,Li, J.,Wu, X. D.,Wang, Z. K.,Liu, S. S.,Li, S. N.,Ma, Y. L.,Zhao, L.,Li, H. Y.,Li, D. M.,Li, W. B.,Liu, Q.,Su, A. Y.,Sun, J.. 2016

[19]GmACP expression is decreased in GmNORK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei. 2016

[20]Construction and analysis of a suppression subtractive hybridization library of regeneration-related genes in soybean. Sun, J.,Li, J.,Liu, M.,Zhang, B. B.,Li, D. M.,Wang, M.,Zhang, C.,Li, W. B.,Wu, X. X.,Sun, J.,Su, A. Y.. 2015

作者其他论文 更多>>