您好,欢迎访问黑龙江省农业科学院 机构知识库!

Ectopic expression of Arabidopsis thaliana Na+(K+)/H+ antiporter gene, AtNHX5, enhances soybean salt tolerance

文献类型: 外文期刊

作者: Wu, X. X. 1 ; Li, J. 1 ; Wu, X. D. 1 ; Liu, Q.; Wang, Z. K. 1 ; Liu, S. S. 1 ; Li, S. N. 1 ; Ma, Y. L. 1 ; Sun, J.; Zhao, 1 ;

作者机构: 1.Northeast Agr Univ, Coll Agron, Key Lab Soybean Biol, Chinese Minist Educ, Harbin, Heilongjiang, Peoples R China

关键词: AtNHX5;Soybean;Na+(K+)/H+ antiporters;Salt tolerance

期刊名称:GENETICS AND MOLECULAR RESEARCH ( 影响因子:0.764; 五年影响因子:0.912 )

ISSN: 1676-5680

年卷期: 2016 年 15 卷 2 期

页码:

收录情况: SCI

摘要: Drought and salt stresses are the two major factors influencing the yield and quality of crops worldwide. Na+(K+)/ H+ antiporters (NHXs) are ubiquitous membrane proteins that play important roles in maintaining the cellular pH and Na+(K+) homeostasis. The model plant Arabidopsis potentially encodes six NHX genes, namely AtNHX1 to 6. In the present study, AtNHX5, a comparatively less well-studied NHX, was cloned and transferred into a soybean variety, Dongnong-50, via Agrobacterium-mediated cotyledonary node transformation to assess its role in improving salt tolerance of the transgenic plants. The transgenic soybean plants were tolerant to the presence of 300 mM NaCl whereas the non-transgenic plants were not. Furthermore, after NaCl treatment, the transgenic plants had a higher content of free proline but lower content of malondialdehyde compared to the non-transgenic plants. Our results revealed that that AtNHX5 possibly functioned by efficiently transporting Na+ and K+ ions from the roots to the leaves. Overall, the results obtained in this study suggest that soybean salt tolerance could be improved through the over expression of Arabidopsis AtNHX5.

  • 相关文献

[1]Cloning Na+/H+ Antiporter Gene (nhaA) and Analysis of Function in Soybean. Wang Quanwei,Chen Liang,Zhang Hailing. 2011

[2]The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation. Zhang, Ming,Li, Ming,Zhang, Ming,Zhao, Jinfeng,Patil, Suyash Bhimgonda,Fang, Jingjing,Li, Xueyong,Zhang, Ming,Li, Long,Yang, Yuhong,Zhao, Linlin,Zhang, Wenhui. 2017

[3]Differentially Expressed Genes of Soybean During Infection by Phytophthora sojae. Xu Peng-fei,Li Wen-bin,Fan Su-jie,Li Ning-hui,Wang Xin,Jiang Liang-yu,Zhang Shu-zhen,Wu Jun-jiang,Wei Lai,Xue, Allen,Chen Wei-yuan,Lv Hui-ying,Lin Shi-feng. 2012

[4]Genetic overlap of QTL associated with low-temperature tolerance at germination and seedling stage using BILs in soybean. Zhang, Wen-Bo,Jiang, Hong-wei,Liu, Chun-Yan,Hu, Guo-Hua,Zhang, Wen-Bo,Jiang, Hong-wei,Xin, Da-Wei,Chen, Qing-Shan,Hu, Guo-Hua,Li, Can-Dong,Zhang, Wen-Bo,Qiu, Peng-Cheng,Chen, Fei-Long. 2012

[5]MICROBIAL ACTIVITY AND COMMUNITY DIVERSITY IN TOBACCO RHIZOSPHERIC SOIL AFFECTED BY DIFFERENT PRE-CROPS. Li, X.,Zhang, X.,Yue, B.,Sun, G.,Li, X.,Zhang, H.,He, G.,Xu, N.,Sun, M.,Zhao, Y.. 2017

[6]Analysis of the APX Gene Expressed in Soybean Infected by Heterodera glycines and Coated with Biocontrol Bacteria Sneb545. Xiang, Peng,Li, Hongpeng,Lu, Wencheng,Li, Baohua,Xiang, Peng,Zhu, Feng,Chen, Jingsheng,Li, Hongpeng,Chen, Lijie,Duan, Yuxi,Chen, Jingsheng. 2016

[7]Temporospatial Characterization of Nutritional and Bioactive Components of Soybean Cultivars in China. Wu, Tingting,Yao, Yang,Sun, Shi,Wang, Caijie,Song, Wenwen,Wu, Cunxiang,Jiang, Bingjun,Hou, Wensheng,Ren, Guixing,Han, Tianfu,Jia, Hongchang,Man, Weiqun,Fu, Lianshun.

[8]GmFW1 expression decreased in GmSymRK knockdown transgenic soybean roots. Wang, Lijun,Deng, Lingwei,Jiao, Yongqing.

[9]The relation between C-4 pathway enzymes and PSII photochemical function in soybean. Li, WH,Lu, QT,Hao, NB,Ge, QY,Zhang, QD,Jiang, GM,Du, WG,Kuang, TY. 2000

[10]Dissection of genetic overlap of drought and low-temperature tolerance QTLs at the germination stage using backcross introgression lines in soybean. Zhang, Wen Bo,Xin, Da Wei,Chen, Qing Shan,Zhang, Wen Bo,Jiang, Hong Wei,Liu, Chun Yan,Hu, Guo Hua,Zhang, Wen Bo,Qiu, Peng Cheng,Li, Can Dong,Hu, Guo Hua.

[11]GmWRKY27 interacts with GmMYB174 to reduce expression of GmNAC29 for stress tolerance in soybean plants. Wang, Fang,Chen, Hao-Wei,Li, Qing-Tian,Wei, Wei,Zhang, Wan-Ke,Ma, Biao,Zhang, Jin-Song,Chen, Shou-Yi,Li, Wei,Bi, Ying-Dong,Lai, Yong-Cai,Liu, Xin-Lei,Man, Wei-Qun.

[12]Impact of long-term continuous soybean cropping on ammonia oxidizing bacteria communities in the rhizosphere of soybean in Northeast China. Chen, Xueli,Han, Xiaozeng,Chen, Xueli,Wang, Yufeng,Li, Weiqun,Wang, Ying,Wei, Dan,Wang, Xiaojun,Chen, Xueli.

[13]Introduction of exogenous wild soybean DNA into cultivated soybean and RAPD molecular verification. XIE, WW,WANG, B,LEI, BJ,LI, XC,LU, CB,QIAN, H,ZHOU, SJ.

[14]Colonization of Clonostachys rosea on soybean root grown in media inoculated with Fusarium graminearum. Pan, F.,Xu, Y.,Xue, Allen G.,McLaughlin, Neil B.,Li, S.,Zhao, D.,Qu, H..

[15]Eplt4 Proteinaceous Elicitor Produced in Pichia pastoris Has a Protective Effect Against Cercosporidium sofinum Infections of Soybean Leaves. Wang, Yun,Song, Jinzhu,Wu, Yingjie,Odeph, Margaret,Liu, Zhihua,Yang, Ping,Yao, Lin,Zhao, Lei,Yang, Qian,Howlett, Barbara J.,Wang, Shuang.

[16]Progress in the Breeding of Soybean for High Photosynthetic Efficiency. Hao, NB,Du, WG,Ge, QY,Zhang, GR,Li, WH,Man, WQ,Peng, DC,Bai, KZ,Kuang, TY.

[17]Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments. Yang, Zhe,Xin, Dawei,Sun, Yanan,Qi, Zhaoming,Chen, Qingshan,Yang, Zhe,Jiang, Hongwei,Han, Xue,Yang, Zhe,Liu, Chunyan,Hu, Guohua.

[18]Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Wang, Jinli,Li, Xiaoliang,Zhang, Junling,Yao, Ting,Wang, Jingguo,Wei, Dan,Wang, Yufeng.

[19]Differential expression of a WRKY gene between wild and cultivated soybeans correlates to seed size. Gu, Yongzhe,Wang, Yan,Gao, Huihui,He, Chaoying,Gu, Yongzhe,Gao, Huihui,He, Chaoying,Li, Wei,Liu, Miao,Lai, Yongcai,Jiang, Hongwei,Chen, Qingshan.

[20]Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Fang, Chao,Ma, Yanming,Liu, Zhi,Wang, Zheng,Yang, Rui,Zhang, Min,Pan, Yi,Zhou, Guoan,Shen, Yanting,Liu, Shulin,Liu, Tengfei,Zhang, Jixiang,Zhu, Baoge,Tian, Zhixi,Wu, Shiwen,Yu, Hong,Qin, Hao,Yuan, Jia,Li, Jiayang,Wang, Guodong,Hu, Guanghui,Zhou, Zhengkui,Ren, Haixiang,Wang, Yanping,Du, Weiguang,Han, Dezhi,Yan, Hongrui,Yuan, Xiaohui,Kong, Fanjiang,Liu, Baohui,Zhang, Zhiwu,Fang, Chao,Liu, Zhi,Shen, Yanting,Liu, Shulin,Liu, Tengfei,Zhang, Jixiang,Wang, Guodong,Tian, Zhixi. 2017

作者其他论文 更多>>