Improving nitrogen contribution in maize post-tasseling using optimum management under mulch drip irrigation in the semiarid region of Northeast China
文献类型: 外文期刊
作者: Hou, Yunpeng 1 ; Xu, Xinpeng 2 ; Kong, Lili 1 ; Zhang, Lei 1 ; Zhang, Yitao 3 ; Liu, Zhiquan 1 ;
作者机构: 1.Jilin Acad Agr Sci, Inst Agr Resources & Environm Res, Changchun, Peoples R China
2.Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Key Lab Plant Nutr & Fertilizer, Minist Agr & Rural Affairs, Beijing, Peoples R China
3.Chinese Acad Agr Sci, Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China
关键词: Maize; film-mulched drip irrigation; semiarid Northeast China; nitrogen use efficiency; nitrogen loss
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:6.627; 五年影响因子:7.255 )
ISSN: 1664-462X
年卷期: 2022 年 13 卷
页码:
收录情况: SCI
摘要: Film-mulched drip irrigation has become an important strategy in maize cultivation in the semiarid region of Northeast China. Most farmers concentrate nitrogen (N) fertilizer use early in maize growth, which leads to low N use efficiency and large N losses. Therefore, a three-year (2018 to 2020) field experiment was conducted to determine the optimal N management strategy for maize under film mulch with drip irrigation in the semiarid region of Northeast China. The experiment included five treatments with the total amount of N fertilizer (210 kg N ha(-1)) applied in different proportions at sowing, sixth-leaf (V6), twelfth-leaf (V12), tasseling (VT), and blister (R2) stages of maize growth: N1, 100-0-0-0-0; N2, 50-50-0-0-0; N3, 30-50-20-0-0; N4, 20-30-30-20-0; and N5, 10-20-30-20-20. The control (CK) did not receive N fertilizer. Maize yield, N uptake and use, changes in soil inorganic N content, and N balance were investigated. Compared with the single basal application (N1), split-N applications (N2, N3, N4, N5) increased maize yield from 13.8% to 24.5% by increasing kernel number per ear and 1000-kernel weight and also improved N accumulation from VT to physiological maturity (PM) stages and its contribution to grain N uptake. In addition, compared with N1, split-N applications also decreased N losses by increasing inorganic N contents in the 0-40 cm soil layer and by decreasing N leaching in the 60-200 cm soil layer. Regression analysis demonstrated that N accumulation after the VT stage was positively related with maize yield. Among treatments, N4 had the highest yield, N recovery efficiency, agronomic efficiency, and partial factor productivity, with respective increases of 24.5%, 14.7 percentage point, 11.4 kg kg(-1), and 11.4 kg kg(-1) compared with those in N1. As a result, N losses were also reduced by 33.7% in N4 compared with those in N1. In conclusion, the split-N management strategy with four N applications under film-mulched drip irrigation has great potential to improve maize yield, increase N use efficiency, and reduce N loss in the semiarid region of Northeast China.
- 相关文献
作者其他论文 更多>>
-
Biodegradable film drip fertigation is more conducive to reducing the diversity and abundance of antibiotic resistance genes than plastic film drip fertigation
作者:Li, Yingjie;Yuan, Yuhan;Li, Cuilan;Zhang, Jinjing;Liu, Hang;Wang, Meng;Li, Qian;Zhang, Lei;Sun, Bo;Qin, Yubo
关键词:Antibiotic resistance genes; Biodegradable film drip fertigation; Bacterial diversity; HT-PCR
-
Different film-mulching strategies alter soil biological characteristics and fungal and archaeal community structures under a drip fertigation system
作者:Li, Yingjie;Li, Cuilan;Zhang, Jinjing;Liu, Hang;Zhang, Lei;Wang, Meng;Li, Qian;Sun, Bo;Qin, Yubo;Ning, Wei
关键词:Drip fertigation; Biodegradable mulching; Fungal and archaeal communities; Biological characteristics; Co-occurrence networks
-
Combining time-variable controlled release urea formulations to improve spring maize yield and reduce nitrogen losses in northeastern China
作者:Hou, Yunpeng;Kong, Lili;Zhang, Lei;Wang, Lichun;Xu, Xinpeng;Zhang, Yitao
关键词:Controlled -release urea; Nitrogen loss; Nitrogen use efficiency; Soil inorganic nitrogen; Northeast China
-
Analysis and Closing of the High-Production-Maize Yield Gap in the Semi-Arid Area of Northeast China
作者:Wang, Meng;Zhang, Lei;Qin, Yubo;Li, Qian;Sun, Bo;Wang, Lichun;Lin, Yuan;Liu, Hang;Zhao, Jiale
关键词:high-production maize; nutrient management; yield gaps; nitrogen fertilizer; planting density
-
Comprehensive assessment of the agronomic, environmental and economic benefits effects of nitrogen fertigation management on maize in Northeast China
作者:Li, Qian;Yuan, Jingchao;Liu, Zhiquan;Qin, Yubo;Wang, Meng;Kong, Lili;Xu, Chen;Yin, Caixia;Li, Qian;Yuan, Jingchao;Liu, Zhiquan;Qin, Yubo;Wang, Meng;Kong, Lili;Yin, Caixia
关键词:Fertigation; maize; yield; N use efficiency; nitrogen and carbon footprint; net income
-
Different behaviors in nitrogen leaching between soil types following the substitution of synthetic fertilizers by manure
作者:Du, Xinzhong;Li, Jungai;Wang, Hongyuan;Bashir, Muhammad Amjad;Wang, Zhen;Zhai, Limei;Liu, Hongbin;Zhang, Yitao;Peng, Chang;Bashir, Muhammad Amjad;Di, Hong J.
关键词:Maize yield; Manure substitution; N leaching; Non-point source pollution
-
Film-mulched drip irrigation achieves high maize yield and low N losses in semi-arid areas of northeastern China
作者:Hou, Yunpeng;Kong, Lili;Zhang, Lei;Wang, Lichun;Xu, Xinpeng;Zhang, Yitao
关键词:Water and nitrogen management; Film -mulched drip irrigation; Nitrogen loss; Nitrogen use efficiency



