Ascorbic acid prevents yellowing of fresh-cut yam by regulating pigment biosynthesis and energy metabolism
文献类型: 外文期刊
作者: Zhao, Xiaoyan 1 ; Guo, Shuang 1 ; Ma, Yue 1 ; Zhao, Wenting 1 ; Wang, Pan 1 ; Zhao, Shuang 1 ; Wang, Dan 1 ;
作者机构: 1.Beijing Acad Agr & Forestry Sci, Inst Agrifood Proc & Nutr, Beijing Key Lab Agr Prod Fruits & Vegetables Prese, Key Lab Vegetable Postharvest Proc,Minist Agr & Ru, Beijing 100097, Peoples R China
关键词: Fresh-cut yam; Ascorbic acid; Yellowing; Biosynthesis; Energy metabolism
期刊名称:FOOD RESEARCH INTERNATIONAL ( 影响因子:7.425; 五年影响因子:7.716 )
ISSN: 0963-9969
年卷期: 2022 年 157 卷
页码:
收录情况: SCI
摘要: The fresh-cut yam would turn yellow under 25 degrees C for 36 h, which could reduce consumer's acceptance. This study aimed to investigate the mechanism by which 2% ascorbic acid inhibits yellowing of fresh-cut yam by detecting enzyme activities, gene expressions and metabolites. Ascorbic acid treatment was found to decrease ATPase activities, ATP content, and energy charge. The transcriptional expression levels of citrate synthase, acetyl-CoA carboxylase, and acetyl-CoA synthetase, which are involved in the tricarboxylic acid cycle, were also decreased by ascorbic acid treatment, thus blocking the supply of precursors and energy for pigment biosynthesis. In addition, ascorbic acid effectively inhibited the formation of carotenoids, flavonoids, and bisdemethoxycurcumin, as indicated by lower metabolic levels, decreased enzyme activities, and downregulated transcriptional expressions. Thus, ascorbic acid prevents yellowing in fresh-cut yam by reducing the energy metabolism level as well as inhibiting pigment (carotenoids, flavonoids, bisdemethoxycurcumin) biosynthesis pathways. Accordingly, ascorbic acid treatment is a safe, effective, and cheap method for inhibiting fresh-cut yam yellowing.
- 相关文献
作者其他论文 更多>>
-
Ozone treatment increase the whiteness of soy protein isolate through the degradation of isoflavone
作者:Li, Junyou;Chen, Yunqi;Yin, Lijun;Lv, Chenyan;Zang, Jiachen;Zhao, Guanghua;Zhang, Tuo;Wang, Dan;Yin, Lijun;Zhao, Guanghua;Zhang, Tuo
关键词:Soy protein isolate; Ozone; Soy isoflavones; Color mechanism; Structure and functional properties
-
Seneca Valley virus 3C protease cleaves HDAC4 to antagonize type I interferon signaling
作者:Li, Zijian;Yang, Jingjing;Ma, Ruiyi;Xie, Shijie;Wang, Dan;Quan, Rong;Song, Jiangwei;Li, Zijian;Yang, Jingjing;Wen, Xuexia;Liu, Jue
关键词:Seneca Valley virus (SVV); HDAC4; 3C protease; cleavage; type I interferon (IFN-I)
-
The Seneca Valley virus 3C protease cleaves DCP1A to attenuate its antiviral effects
作者:Yang, Jingjing;Li, Zijian;Wen, Xuexia;Yang, Jingjing;Li, Zijian;Wen, Xuexia;Ma, Ruiyi;Xie, Shijie;Wang, Dan;Quan, Rong;Song, Jiangwei
关键词:Seneca Valley virus (SVV); DCP1A; 3C protease; 3D; cleavage
-
Isolation and identification of a subtype C avian metapneumovirus in chickens in Jiangsu, China
作者:Yao, Zhiyan;Li, Jingyi;Shi, Yongyan;Sun, Tong;Yang, Xiaoyu;Mao, Jingyu;Wang, Dedong;Zhou, Jianwei;Liu, Jue;Hou, Lei;Li, Jingyi;Shi, Yongyan;Sun, Tong;Yang, Xiaoyu;Mao, Jingyu;Wang, Dedong;Zhou, Jianwei;Liu, Jue;Hou, Lei;Quan, Rong;Wang, Dan;Chu, Jun
关键词:Avian metapneumovirus subgroup C (aMPV/C); Isolation and identification; Nucleoprotein (N) gene; Phylogenetic analysis; Pathogenicity
-
Evaluation of the nutritional, in vitro protein digestive and bioactive characteristics of a quinoa-based protein beverage
作者:Li, Mengzhuo;Li, Mengzhuo;Wang, Junjuan;Zhao, Xiaoyan;Wang, Dan;Zhao, Yuanyan;Ge, Zhiwen;Qin, Peiyou;Zhu, Manli;Zhang, Lizhen;Zou, Liang;Qin, Peiyou
关键词:Quinoa; Plant-based protein beverage; Amino acid score; In vitro protein digestibility; Antioxidant activity; ACE inhibitory activity
-
Insights into the non-covalent interaction between muskmelon peel pectin and selected C9 aldehydes by the application of multiple spectroscopy and molecular docking
作者:Zhao, Wenting;Guo, Xingfeng;Pang, Xueli;Xiao, Zhijian;Wu, Jihong
关键词:Alkaline-extracted pectin; (E)-2-nonenal; (E,Z)-2,6-nonadienal; Retention; Hydrophobic interaction; Hydrogen bond
-
Seneca Valley virus 3C protease targets TRIM32 for cleavage to antagonize its antiviral effects
作者:Yang, Jingjing;Li, Zijian;Ma, Ruiyi;Xie, Shijie;Wang, Dan;Quan, Rong;Song, Jiangwei;Yang, Jingjing;Li, Zijian;Ma, Ruiyi;Liu, Jue
关键词:Seneca Valley virus (SVV); TRIM32; 3C protease; cleavage; type I interferon (IFN-I)



