COARSE LOCALIZATION USING SPACE-TIME AND SEMANTIC-CONTEXT REPRESENTATIONS OF GEO-REFERENCED VIDEO SEQUENCES
文献类型: 会议论文
第一作者: Jassem Mansouri
作者: Jassem Mansouri 1 ; Bassem Seddik 1 ; Sami Gazzah 1 ; Thierry Chateau 2 ;
作者机构: 1.SAGE R.U., University of Sousse
2.Pascal Institute, Blaise Pascal University
关键词: Video processing;Localization;Spatio-temporal interest point;Semantic shape context;Classification
会议名称: International Conference on Image Processing Theory, Tools and Applications
主办单位:
页码: 355-359
摘要: We introduce a new video contents description approach and use it for the purpose of coarse localization. It is based on a Bag of Words representation combining both space-time STIP features and semantic-context SSC features. We assume that adding semantic context encodes in a more efficient way the spatio-temporal information into video sequences. The resulting augmented descriptor is related to a geographic location that can be estimated within a classic classification framework. We show that on real geo-referenced video sequences, the proposed system improves the localization compared to classical descriptors.
分类号: TP391.41-53
- 相关文献
[1]Study for Emotion Recognition of Different Age Groups Students during Online Class. Ati Jain,Hare Ram Sah,Abhay Kothari. 2021
作者其他论文 更多>>
-
Transductive Transfer Learning to Specialize a Generic Classifier Towards a Specific Scene
作者:Houda Maamatou;Thierry Chateau;Sami Gazzah;Yann Goyat;Najoua Essoukri Ben Amara
关键词:Transductive Transfer Learning;Specialization;Generic Classifier;Pedestrian Detection;Sequential Monte Carlo Filter (SMC)
-
Modalities Combination for Italian Sign Language Extraction and Recognition
作者:Bassem Seddik;Sami Gazzah;Najoua Essoukri Ben Amara
关键词:Motion spotting;Action recognition;Fisher vector;Modalities combination;Classification fusion