您好,欢迎访问北京市农林科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
收录级别:EI(精确检索)
1227条记录
基于拉曼成像技术的面粉中抗坏血酸添加剂定量检测研究

光谱学与光谱分析 2021 EI 北大核心 CSCD

摘要:抗坏血酸是一种常见的面粉品质改良剂,用于改善面团的流变学特性及面包的烘焙品质。本研究以面粉中含不同浓度抗坏血酸的混合样品为研究对象,通过拉曼成像技术实现面粉中抗坏血酸的检测、识别和定量分析。分别采集面粉、抗坏血酸和面粉-抗坏血酸混合样品的拉曼图像,确定感兴趣区域及光谱范围,以抗坏血酸拉曼光谱中强度较高且区别于面粉的3处拉曼峰(631, 1 128和1 658 cm-1)为依据对混合样品的平均拉曼光谱进行分析,结果显示其不能有效评估面粉中抗坏血酸含量,研究探索对图像中各像素点对应的拉曼光谱进行分析以实现面粉中抗坏血酸的有效检测。以混合样品图像中各像素点拉曼光谱作为校正集、面粉平均拉曼光谱和抗坏血酸平均拉曼光谱的线性组合光谱作为验证集建立偏最小二乘模型,模型的回归系数用于将混合样品的三维拉曼图像重建为二维灰度图像,通过阈值分割实现面粉中抗坏血酸的检测和识别,根据识别结果建立定量分析模型。结果显示,偏最小二乘模型的最高和最低回归系数分别对应于抗坏血酸和面粉的最强拉曼峰,所有回归系数应用于混合样品拉曼图像将其转换为灰度图像后面粉和抗坏血酸的像素点仍难以识别,阈值分割方法将灰度图像转换为用于分类面粉像素和抗坏血酸像素的二值图像实现了面粉中抗坏血酸的有效检测。通过分析各浓度混合样品对应子样品中识别到的抗坏血酸像素点数确定本研究对面粉中抗坏血酸的最低检测浓度为0.01%(100 mg·kg-1),混合样品中抗坏血酸浓度同图像中识别到的抗坏血酸像素点在0.01%~0.20%范围内具有良好的线性关系,决定系数为0.996 0。研究结果可为面粉中抗坏血酸添加剂的定量检测提供方法支持,为大规模快速筛查提供了技术参考。

关键词: 拉曼成像技术 面粉 抗坏血酸 无损检测 定量分析

 全文链接 请求原文
基于改进分离阈值特征优选的秋季作物遥感分类

农业机械学报 2021 EI 北大核心 CSCD

摘要:为了提高秋季作物分类精度,以多时相的Sentinel-2为数据源,以生育进程相近的秋季作物为分类对象,提出一种基于Relief F算法和信息熵改进分离阈值算法(Modified ISEa TH-based entropy,EMISE)的多评价准则融合特征优选算法——改进分离阈值组合式特征优选算法(Modified EMISE-based Relief F,Re EMISE),并分析了不同特征对秋季作物分类的重要性。首先,利用Relief F算法对特征进行初选,结合EMISE算法对2种评价准则进行融合,再优化初选特征集,进而利用随机森林(Random forest,RF)方法提取农作物种植面积,并与单评价准则的Relief F算法和EMISE算法的随机森林分类精度进行比较。同时,利用多时相光谱特征、传统指数特征、红边指数特征、纹理特征、不同时相波段差值特征、不同时相波段比值特征及优选特征,通过7组不同的特征组合提取秋季作物种植面积,分析不同特征组合对秋季作物分类精度的影响。结果表明:Re EMISE特征优选的随机森林法在特征变量为9个时精度最高,总体精度和Kappa系数分别为95.391 8%和0.939 7;综合多特征是提高农作物分类精度的关键,在多时相光谱特征基础上分别加入传统指数特征和红边特征,总体精度分别提高1.502 1、1.571 5个百分点,Kappa系数分别提高0.019 8、0.020 7。因此综合多特征的Re EMISE特征优选的随机森林法可以有效提高秋作物分类精度和效率。

关键词: 秋季作物 遥感分类 特征优选 改进分离阈值组合式特征优选算法 随机森林

 全文链接 请求原文
基于无人机高光谱特征参数和株高估算马铃薯地上生物量

光谱学与光谱分析 2021 EI 北大核心 CSCD

摘要:地上生物量(above-ground biomass,AGB)是评价作物长势及其产量估测的重要指标,对指导农业管理具有重要的作用.因此,快速准确地获取生物量信息,对于监测马铃薯生长状况,提高产量具有重要的意义.于马铃薯现蕾期、块茎形成期、块茎增长期、淀粉积累期、成熟期获取成像高光谱影像、实测株高(heigh,H)、地上生物量和地面控制点(ground control point,GCP)的三维空间坐标.首先基于无人机高光谱灰度影像结合GCP生成试验田的DSM(digital surface model,DSM),利用DSM提取马铃薯的株高(Hdsm);然后利用无人机高光谱影像计算一阶微分光谱、植被指数和绿边参数,进而分析高光谱特征参数(hyperspectral characteristic parameters,HCPs)和绿边参数(green edge parameters,GEPs)与马铃薯AGB的相关性,每个生育期筛选出相关性较高的前7个高光谱特征参数和最优绿边参数(optimal green edge param-eters,OGEPs);最后基于HCPs,HCPs加入OGEPs,HCPs加入OGEPs和Hdsm的组合利用偏最小二乘回归(partial least square regression,PLSR)和随机森林(random forest,RF)估算不同生育期的AGB.结果表明:(1)提取的Hdsm与实测株高H高度拟合(R2=0.84,RMSE=6.85 cm,NRMSE=15.67%);(2)每个生育期得到的最优绿边参数不完全相同,现蕾期、块茎增长期和淀粉积累期OGEPs为Rsum,块茎形成期和成熟期OGEPs分别为Drmin和SDr;(3)与仅使用HCPs估算AGB相比,使用HCPs加入OGEPs,HCPs加入OGEPs和Hdsm在马铃薯不同生育期可以提高AGB估算精度,且以后者为自变量提高精度的幅度更大;(4)每个生育期利用PLSR和RF估算AGB的建模和验证R2从现蕾期到块茎增长期呈上升趋势,随后开始降低,整体上R2呈先上升后下降的趋势,通过PLSR方法构建的估算AGB模型效果优于RF方法,其中块茎增长期表现效果最好.因此,高光谱特征参数中结合最优绿边参数和株高,并使用PLSR方法可以改善马铃薯AGB的估算效果.

关键词: 马铃薯 地上生物量 高光谱特征参数 绿边参数 株高

 全文链接 请求原文
改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法

农业工程学报 2021 EI 北大核心 CSCD

摘要:基于深度神经网络的果实识别和分割是采摘机器人作业成功的关键步骤,但由于网络参数多、计算量大,导致训练时间长,当模型部署到采摘机器人上则存在运行速度慢,识别精度低等问题。针对这些问题,该研究提出了一种改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法,采用跨阶段局部网络(Cross Stage Partial Network,CSPNet)与Mask R-CNN网络中的残差网络(Residual Network,ResNet)进行融合,通过跨阶段拆分与级联策略,减少反向传播过程中重复的特征信息,降低网络计算量的同时提高准确率。在番茄果实测试集上进行试验,结果表明以层数为50的跨阶段局部残差网络(Cross Stage Partial ResNet50,CSP-ResNet50)为主干的改进Mask R-CNN模型对绿熟期、半熟期、成熟期番茄果实分割的平均精度均值为95.45%,F1分数为91.2%,单张图像分割时间为0.658 s。该方法相比金字塔场景解析网络(Pyramid Scene Parsing Network,PSPNet)、DeepLab v3+模型和以ResNet50为主干的Mask R-CNN模型平均精度均值分别提高了16.44、14.95和2.29个百分点,相比以ResNet50为主干的Mask R-CNN模型分割时间减少了1.98%。最后将以CSP-ResNet50为主干的改进Mask R-CNN模型部署到采摘机器人上,在大型玻璃温室中开展不同成熟度番茄果实识别试验,该模型识别正确率达到90%。该研究在温室环境下对不同成熟度番茄果实具有较好的识别性能,可为番茄采摘机器人精准作业提供依据。

关键词: 图像处理 机器视觉 模型 番茄 成熟度分割 Mask R-CNN 残差网络 跨阶段局部网络

 全文链接 请求原文
基于光谱及成像技术的种子品质无损速测研究进展

光谱学与光谱分析 2021 EI 北大核心 CSCD

摘要:种子是农业生产过程的重要生产资料.种子质量评价、活力与老化检测、纯度与真伪鉴别、分类与溯源研究是种子品质检测中的常见问题.种子质量主要包含种子含水率、蛋白含量、脂肪酸含量、淀粉含量等,是种子品质分级的重要指标,并且关系到种子存储过程的安全问题.种子活力是种子发芽和出苗率、幼苗生长的潜势、植株抗逆能力和生产潜力的总和;高活力种子具有明显的生长优势和生产潜力.种子老化是指种子活力的自然衰退,表现为种子变色、发芽率低、生长势差、作物减产.种子的纯度与真伪则会影响作物产量和农产品品质;而种子分类与溯源则是保证种子纯度与鉴别种子真伪的重要方法,进而为作物产量与产品品质提供保障.对于种子品质分析,传统方法通常需要对样品做不可逆的破坏性分析,且分析时间长、过程复杂,难以适应现代农业对种子生产环节的需要.因此,开展种子品质无损快速检测技术研究成为当前亟待解决的问题.近年来,随着化学计量学的发展和计算机技术的进步,近红外光谱法以其快速、无损、高效等优势,在农产品、食品、农业投入品等的无损快速分析方面得以广泛的应用.进一步地,将光谱技术与成像技术相结合,高光谱成像技术近年来日益兴起,相比较于传统的光谱技术,高光谱成像技术在获得待测样品的光谱信息的同时,还可以获取样品的空间分布信息以及图像特征.基于近红外光谱及高光谱成像等无损快速检测技术,从种子质量评价、活力与老化检测、纯度与真伪鉴别、分类与溯源研究四方面对近年来关于种子品质无损快速检测文献进行综述.在分析不同检测技术特点的基础上,分别就上述种子品质检测方面的问题加以整理.进而对种子品质无损快速检测的技术特点进行了总结与展望.

关键词: 种子 近红外光谱 高光谱成像 无损检测

 全文链接 请求原文
基于改进YOLO v3-tiny的全景图像农田障碍物检测

农业机械学报 2021 EI 北大核心 CSCD

摘要:为实现自动导航农机的避障,解决搭载在农机顶部的全景相机获取其周围360°的图像信息并精确实时快速检测出障碍物的问题,提出了一种改进YOLO v3-tiny目标检测模型,实现了田间行人和其他农机的检测与识别。为了提高全景图像中小目标的检测效果,以检测速度快、轻量级的网络模型YOLO v3-tiny为基础框架,通过融合浅层特征与第二YOLO预测层之前的拼接层作为第三预测层,增加小目标的检测效果;为了进一步增加网络模型对目标特征的提取能力,借鉴残差网络的思想,在YOLO v3-tiny主干网络上引入残差模块,增加网络深度和学习能力,从而能够较好地提高网络的检测能力。为了验证模型的性能,建立了农田环境下1 100幅行人与农机两类障碍物图像原始数据集,经数据扩增后得到2 200幅图像数据集,按8∶1∶1将数据集划分为训练集、验证集和测试集,在Pytorch 1.8深度学习框架下进行模型训练,模型训练完后用220幅测试集图像对不同模型进行测试。试验结果表明,基于改进YOLO v3-tiny的农田障碍物检测模型,平均准确率和召回率分别为95.5%和93.7%,相比于原网络模型,分别提高了5.6、5.2个百分点;单幅全景图像检测耗时为6.3 ms,视频流检测平均帧率为84.2 f/s,模型内存为64 MB。改进后的模型,在保证检测精度较高的同时,能够满足农机在运动状态下实时障碍物检测需求。

关键词: 农田障碍物检测 全景相机 YOLO v3-tiny 残差网络

 全文链接 请求原文
光谱关键变量筛选在农产品及食品品质无损检测中的应用进展

光谱学与光谱分析 2021 EI 北大核心 CSCD

摘要:农产品及食品的品质与安全一直以来都是人们关注的焦点,不仅关系着人们的身体健康,而且关系着社会稳定甚至国家安全。由于农产品及食品的品质不合格引发的安全事件备受社会各界的广泛关注。对农产品及食品的品质的监管长久以来都是分析检测领域的重点和难点。我国人口众多,对农产品和食品的消费量非常大。面对如此大量农产品及食品品质的无损快速检测需求,光谱法以其快速、无损、高效、环境友好、可现场检测等诸多特点,为农产品及食品品质的无损快速分析提供了良好的解决方案。然而,传统的光谱法在检测过程中所使用的数据量十分庞大,不仅在建立校正模型过程中会消耗大量时间,而且难以完成大量农产品及食品的品质在线高通量无损快速检测。大量数据的计算成为限制光谱类分析仪器工作效率的主要瓶颈之一,并且大量数据的计算对仪器设备的硬件配置也提出了非常高的要求,从而间接地提高了光谱分析技术的应用成本。近年来,关键变量筛选技术脱颖而出,并成为光谱分析的一个新热点。通过筛选,采用少量关键变量建立校正模型即可得到和全谱数据建模准确度相差无几的分析结果,从而可以有效提高分析仪器的工作效率并间接地降低光谱分析技术的应用成本,进而为农产品及食品品质的高通量检测提供了可靠的技术支持、为满足人民日益增长的美好生活需要提供科技保障。针对光谱关键变量筛选在粮食及粮食作物、蔬菜、水果、经济作物、肉类、食品品质与安全领域的无损检测应用进行综述,对光谱关键变量筛选技术的应用从筛选方法、应用范围、应用效果等方面进行了分类总结归纳,并就光谱关键变量筛选技术在农产品及食品品质无损检测中的应用从变量筛选方法特点及趋势、所选变量的稳定性和可靠性、所选变量的实际意义等方面进行了展望。

关键词: 光谱分析 关键变量筛选 无损检测 农产品品质 食品品质与安全

 全文链接 请求原文
静液压传动拖拉机定速巡航控制系统设计与试验

农业机械学报 2021 EI 北大核心 CSCD

摘要:针对现有农机速度调节策略功率匹配度不高、燃油经济性差的问题,以静液压传动拖拉机为平台,基于CAN总线设计了拖拉机定速巡航控制系统。该系统由拖拉机工况采集、负载检测、油门控制、变量泵排量调节、作业负载调节、通信等模块组成。设计了油门调节机构和负载调节装置,获取并解析了拖拉机工况数据,建立了静液压传动拖拉机油门开度、变量泵排量与速度对应的数学模型,制定了发动机转速与变量泵排量协同控制策略。分别在水泥路面空载、田间空载和平地作业3种工况下进行了协同控制策略试验,在平地作业工况下进行了定油门控制策略、油门排量耦合控制策略和油门排量协同控制策略试验。结果表明,3种工况下,协同控制策略的速度控制绝对误差分别为0.005、0.007、0.012 m/s;在达到相同目标速度的前提下油门排量协同控制策略降低了发动机转速。拖拉机定速巡航控制系统能够在保证速度控制精度的前提下,减小燃油消耗。

关键词: 拖拉机 定速巡航控制系统 静液压传动 协同机制策略 功率匹配

 全文链接 请求原文
基于时序Sentinel-2影像的现代农业园区作物分类研究

红外与激光工程 2021 EI 北大核心 CSCD

摘要:快速、准确地掌握作物空间分布,估算不同作物种植面积及范围,这对制定宏观农业政策并指导农民进行农业生产具有重要意义。以我国内蒙古自治区扎赉特旗现代农业示范园区为研究区域,基于2019年5月至10月共9景多时相Sentinel-2卫星遥感影像,通过计算并分析不同作物归一化差值植被指数(NDVI)、比值植被指数(RVI)、增强型植被指数(EVI)等多种典型植被指数和近红外波段Ref(NIR)的时序变化特征,采用随机森林(Random Forest, RF)、决策树(Decision Tree, DT)、支持向量机(Support Vector Machine, SVM)和最大似然法(Maximum Likelihood, ML)4种分类方法对研究区多种作物进行分类识别,成功提取园区内主要作物(水稻、玉米、甜叶菊、旱稻和大豆等)空间分布情况。将RF结果与DT、SVM和ML分类结果对比,结果显示,RF总体分类精度最高,达到95.8%,Kappa系数为0.944;DT、SVM和ML分类精度分别为92.2%、91.6%和86.5%。上述研究结果表明,多时相Sentinel-2遥感影像经过光谱指数时序变化特征提取后,利用随机森林算法进行作物分类可得到精度较高的结果,这为精细指导规模化园区农业生产提供了有效的技术支持。

关键词: 随机森林算法 近红外波段 时间序列 Sentinel-2 作物分类

 全文链接 请求原文
基于注意力机制和多尺度残差网络的农作物病害识别

农业机械学报 2021 EI 北大核心 CSCD

摘要:针对传统农作物病害识别方法依靠人工提取特征,步骤复杂且低效,难以实现在田间环境下识别的问题,提出一种多尺度卷积结构与注意力机制结合的农作物病害识别模型。该研究在残差网络(ResNet18)的基础上进行改进,引入Inception模块,利用其多尺度卷积核结构对不同尺度的病害特征进行提取,提高了特征的丰富度。在残差结构的基础上加入注意力机制SE-Net(Squeeze-and-excitation networks),增强了有用特征的权重,减弱了噪声等无用特征的影响,进一步提高特征提取能力并且增强了模型的鲁棒性。实验结果表明,改进后的多尺度注意力残差网络模型(Multi-Scale-SE-ResNet18)在复杂田间环境收集的8种农作物病害数据集上的平均识别准确率达到95.62%,相较于原ResNet18模型准确率提高10.92个百分点,模型占用内存容量仅为44.2 MB。改进后的Multi-Scale-SE-ResNet18具有更好的特征提取能力,可以提取到更多的病害特征信息,并且较好地平衡了模型的识别精度与模型复杂度,可为田间环境下农作物病害识别提供参考。

关键词: 农作物病害识别 残差网络 特征提取 多尺度卷积 注意力机制

 全文链接 请求原文