基于注意力机制和多尺度残差网络的农作物病害识别

文献类型: 中文期刊

第一作者: 黄林生

作者: 黄林生;罗耀武;杨小冬;杨贵军;王道勇

作者机构:

关键词: 农作物病害识别;残差网络;特征提取;多尺度卷积;注意力机制

期刊名称: 农业机械学报

ISSN: 1000-1298

年卷期: 2021 年 010 期

页码: 264-271

收录情况: EI ; 北大核心 ; CSCD

摘要: 针对传统农作物病害识别方法依靠人工提取特征,步骤复杂且低效,难以实现在田间环境下识别的问题,提出一种多尺度卷积结构与注意力机制结合的农作物病害识别模型。该研究在残差网络(ResNet18)的基础上进行改进,引入Inception模块,利用其多尺度卷积核结构对不同尺度的病害特征进行提取,提高了特征的丰富度。在残差结构的基础上加入注意力机制SE-Net(Squeeze-and-excitation networks),增强了有用特征的权重,减弱了噪声等无用特征的影响,进一步提高特征提取能力并且增强了模型的鲁棒性。实验结果表明,改进后的多尺度注意力残差网络模型(Multi-Scale-SE-ResNet18)在复杂田间环境收集的8种农作物病害数据集上的平均识别准确率达到95.62%,相较于原ResNet18模型准确率提高10.92个百分点,模型占用内存容量仅为44.2 MB。改进后的Multi-Scale-SE-ResNet18具有更好的特征提取能力,可以提取到更多的病害特征信息,并且较好地平衡了模型的识别精度与模型复杂度,可为田间环境下农作物病害识别提供参考。

分类号: S432%TP391.41

  • 相关文献

[1]基于多尺度和注意力机制的番茄病害识别方法. 张宁,吴华瑞,韩笑,缪祎晟. 2021

[2]基于可见光谱和改进注意力的农作物病害识别. 孙文斌,王荣,高荣华,李奇峰,吴华瑞,冯璐. 2022

[3]基于高光谱成像和Att-BiGRU-RNN的柑橘病叶分类. 吴叶兰,管慧宁,廉小亲,于重重,廖禺. 2023

[4]基于深度残差网络的番茄叶片病害识别方法. 吴华瑞. 2019

[5]改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法. 龙洁花,赵春江,林森,郭文忠,文朝武,张宇. 2021

[6]基于改进YOLO v3-tiny的全景图像农田障碍物检测. 陈斌,张漫,徐弘祯,李寒,尹彦鑫. 2021

[7]基于深度残差网络的麦穗回归计数方法. 刘航,刘涛,李世娟,李路华,吕纯阳,刘升平. 2021

[8]融合ResNet与支持向量机的葡萄园冠层图像叶片覆盖度分类. 代国威,陈稼瑜,樊景超. 2023

[9]改进YOLOv4的温室环境下草莓生育期识别方法. 龙洁花,郭文忠,林森,文朝武,张宇,赵春江. 2021

[10]基于YOLOX改进模型的茶叶嫩芽识别方法. 俞龙,黄楚斌,唐劲驰,黄浩宜,周运峰,黄永权,孙佳琪. 2022

[11]融合注意力机制的开集猪脸识别方法. 王荣,高荣华,李奇峰,刘上豪,于沁杨,冯璐. 2023

[12]基于双线性注意力网络的农业灯诱害虫细粒度图像识别研究. 姚青,姚波,吕军,唐健,冯晋,朱旭华. 2021

[13]基于改进YOLO v5的复杂环境下桑树枝干识别定位方法. 李丽,卢世博,任浩,徐刚,周永忠. 2024

[14]改进YOLOv5在胡瓜钝绥螨品质管控系统中的设计与应用. 李建兴,刘振宇,马莹,张艳璇,宋江,纪茂源,旷树森. 2023

[15]基于多维间注意力机制的水稻病害识别模型. 王忠培,谢成军,董伟,管博伦. 2024

[16]基于Attention_DenseCNN的水稻问答系统问句分类. 王郝日钦,吴华瑞,冯帅,刘志超,许童羽. 2021

[17]基于改进YOLOv5s的硬核期葡萄簇检测. 冯晓,张辉,刘运超,张微,李小红,马中杰. 2024

[18]无人机遥感影像在油菜品种识别中的应用. 李婕,李毅,张瑞杰,李俐俐,李礼,姚剑,乔江伟. 2022

[19]基于注意力机制及多尺度特征融合的番茄叶片缺素图像分类方法. 韩旭,赵春江,吴华瑞,朱华吉,张燕. 2021

[20]基于注意力机制的农业文本命名实体识别. 赵鹏飞,赵春江,吴华瑞,王维. 2021

作者其他论文 更多>>