基于改进YOLO-V4网络的浅海生物检测模型

文献类型: 中文期刊

第一作者: 毛国君

作者: 毛国君;翁伟栋;朱晋德;张媛;吴富村;毛玉泽

作者机构:

关键词: 模型;深度学习;目标检测;YOLO-V4;跨阶段局部网络;嵌连接

期刊名称: 农业工程学报

ISSN:

年卷期: 2021 年 012 期

页码: 152-158

收录情况: EI ; 北大核心 ; CSCD

摘要: 海洋生物智能检测是海洋牧场战略的一部分,而利用水下机器人在复杂的海洋环境中快速、准确地检测海洋生物是关键问题。由于海底环境复杂、亮度分布不均匀、海洋生物与其生存环境的区分性差、生物被遮蔽或半隐蔽等原因,准确识别海洋生物是一个巨大的挑战。随着卷积神经网络的发展,基于深度学习的目标检测算法成为主流,出现了如EfficientDet、RetinaNet和YOLO-V4等典型算法。这些基于深度学习的算法都不是完全尽善尽美的,不能完全满足海洋生物识别的需求。在探测精度、运算速度、密集目标探测效果等方面都有提高的空间。该研究建立了一个海洋生物数据集,采集了原始图片1 810张,数据增强后得到7 240张图片,它们被分成训练集(80%)和测试集(20%)。其次,通过引入跨阶段局部网络的概念,构建了嵌连接EC(Embedded Connection)部件,并将其嵌入到YOLO-V4网络的末端,得到改进的YOLO-V4网络。最后,该研究提出了基于改进YOLO-V4网络的海洋生物检测模型MOD(MarineOrganism Detection)。试验结果表明,MOD模型的mAP50、mAP75(交并比阈值为0.5、0.75的精度均值)分别为0.969和0.734,计算量为35.328BFLOPs(十亿浮点运算数),检测帧速为139 ms(具有图形加速器Ge Force GTX1650上)。与原始YOLO-V4模型相比,MOD模型的m AP50和m AP75提高了0.9和4.8个百分点,而计算量仅提高0.2%。此外,对比两种模型的准确率-召回率曲线,MOD模型的精确度与召回率的平衡点更接近(1,1),因此MOD模型能学习精度和效率的平衡性更好。该研究直接面向浅海生物的目标检测问题,所提供的方法可以为水下机器人精准执行智能捕捞等任务提供有益参考。

分类号: TP391.41%TP18%Q178.53

  • 相关文献

[1]基于坐标注意力机制与高效边界框回归损失的线虫快速识别. 陆健强,梁效,余超然,兰玉彬,邱洪斌,黄捷伟,尹梓濠,陈慧洁,郑胜杰. 2022

[2]改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法. 龙洁花,赵春江,林森,郭文忠,文朝武,张宇. 2021

[3]基于机器视觉和深度学习的稻纵卷叶螟性诱智能监测系统. 张哲宇,孙果镓,杨保军,刘淑华,吕军,姚青,唐健. 2022

[4]农业害虫检测的深度学习算法综述. 蒋心璐,陈天恩,王聪,李书琴,张宏鸣,赵春江. 2023

[5]基于深度学习的蚕茧种类识别研究. 石洪康,李林波,祝明辉,陈义安,马勇,张剑飞. 2023

[6]基于AlexNet的栽培苜蓿病害识别. 李云昊,李仲贤,伏帅,张忠雪,茆士琴,冯琦胜,梁天刚,李彦忠. 2023

[7]基于YOLOv4的稻田杂草目标检测算法. 袁涛,胡冬,马超,李琳一,郑秀国,钱戴玲. 2023

[8]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[9]基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法. 李明,丁智欢,赵靖暄,陈思铭,李文勇,杨信廷. 2023

[10]基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究. 戴佳兵,宋春芳,凌彩金,李臻锋,孙崇高. 2024

[11]基于YOLOv3模型的金枪鱼鱼群特征识别初步研究. 马硕,张禹,王鲁民,张勋,金卫国,王国来,常卫东. 2021

[12]大田环境下的农业害虫图像小目标检测算法. 蒋心璐,陈天恩,王聪,赵春江. 2024

[13]基于深度学习的半监督图像标注系统设计与实现. 胡明玉,夏雪,杨晨雪,曹景军,柴秀娟. 2021

[14]深度学习在蜜蜂研究中的应用. 孙逸飞,丁桂玲,路运才,刘振虎,黄家兴. 2023

[15]面向海洋渔业捕捞生产的深度学习方法应用研究进展. 张胜茂,孙永文,樊伟,唐峰华,崔雪森,伍玉梅. 2022

[16]水族馆鱼类目标检测网络优化研究. 刘洋,张胜茂,王书献,王斐,樊伟,邹国华,伯静. 2022

[17]目标检测算法在农业领域中的应用. 温科,刘波,蒋辉霞,刘李逵,任倪. 2024

[18]基于ROI融合特征的柑橘炭疽病诊断方法. 熊晓菲,王秀琴,庄翠珍,郭家贤,谢新锐,吴建伟,李奇峰. 2024

[19]基于深度学习的枸杞病虫害识别研究. 李季,杨淑婷,张学俭,周慧,冶鑫,梁爱银. 2024

[20]基于RT-WEDT的麦穗检测与计数方法. 李婕,杨子豪,郑权,乔江伟,涂静敏. 2024

作者其他论文 更多>>