基于边缘设备的轻量化小目标果实检测模型

文献类型: 中文期刊

第一作者: 张文利

作者: 张文利;陈开臻;刘鈺昕;段玉林;郭威;史云

作者机构:

关键词: 果实检测;Yolov3;小目标;轻量化;Jetson TX2 nano

期刊名称: 中国农业信息

ISSN: 1672-0423

年卷期: 2021 年 001 期

页码: 28-36

摘要: 【目的】随着计算机视觉和智慧农业的快速发展,果实检测技术已成为研究热点。然而在果园实际应用场景中,存在模型计算量大、目标果实尺度小的问题,导致模型难以在边缘设备上实时运行且小目标果实检测精度低,因此文章通过改进Yolov3模型,设计并实现一种轻量化小目标果实检测模型RegNet-Yolov3,能够在边缘设备上实时运行并实现高精度果实检测。【方法】该模型通过构建轻量化特征提取网络,有效降低模型参数计算量,满足在边缘设备上实时运行要求;并针对柑橘果实小尺度特点,通过添加浅层网络检测分支优化模型小目标检测性能,提升检测精度。【结果】将模型部署在边缘设备Jetson TX2 nano上进行测试,模型m AP值和网络推理速度分别为96.0%和122 ms,均优于原先Yolov3网络测试结果。【结论】实验结果表明,该研究模型能够实现在保持较高检测精度下,在边缘设备Jetson TX2 nano上实时运行,满足果园作业平台果实检测工作。

分类号: TP391.41%S126

  • 相关文献

[1]多源场景下粘虫板小目标害虫轻量化检测识别模型. 杨信廷,胡焕,陈晓,李汶政,周子洁,李文勇. 2025

[2]基于LW-YOLOv3模型的棉花主茎生长点检测与定位研究. 孙想,吴华瑞,朱华吉,杨雨森,陈诚,何思琪,王春山. 2021

[3]基于改进YOLOX模型的芝麻蒴果检测方法研究. 王川,赵恒滨,李国强,张建涛,高桐梅,赵巧丽,郑国清. 2022

[4]基于Faster R-CNN的海面垃圾检测研究. 韦波,张衡,王斐,王书献,杨昱皞,姚宇青,戴阳. 2022

[5]基于改进YOLOv3的温室番茄果实识别估产方法. 成伟,张文爱,冯青春,张万豪. 2021

[6]基于Yolo的结直肠息肉CT影像分析算法研究. 代国威,晏静香. 2021

[7]基于卷积神经网络的水稻虫害识别方法. 郭阳,许贝贝,陈桂鹏,丁建,严志雁,梁华,吴昌华. 2021

[8]改进YOLOv3的多尺度高分辨率特征增强图像目标检测. 杨文姬,李浩,王映龙,梅梦. 2023

[9]基于YOLOv3深度学习算法的桑椹菌核病严重度检测方法研究与应用. 朱志贤,邱盼,张成,董朝霞,张凤,胡兴明,于翠. 2024

[10]一种剑麻装载机的轻量化设计与应用. 陈涛,金刚,覃旭,黄显雅,彭欣怡,刘明,吴密,周肇峰. 2021

[11]基于轻量化卷积神经网络的改进模型与验证. 李润龙,王运圣,徐识溥,刘勇. 2020

[12]改进Multi-scale ResNet的蔬菜叶部病害识别. 王春山,周冀,吴华瑞,滕桂法,赵春江,李久熙. 2020

[13]喷雾机喷杆结构的研究现状及展望. 乔白羽,丁素明,薛新宇,崔龙飞,周晴晴,张亚萍. 2017

[14]电驱自走式农机测试平台的设计. 余涛,刘俊杰,杨存志,叶岩,孙先明,李国林. 2021

[15]轻型拖车车架设计和静动力学仿真研究. 石凯飞. 2022

[16]基于RDN-YOLO的自然环境下水稻病害识别模型研究. 廖娟,刘凯旋,杨玉青,严从宽,张爱芳,朱德泉. 2024

[17]基于改进YOLOv4算法的番茄叶部病害识别方法. 储鑫,李祥,罗斌,王晓冬,黄硕. 2023

[18]基于改进YOLO v5s的轻量化植物识别模型研究. 马宏兴,董凯兵,王英菲,魏淑花,黄文广,苟建平. 2023

[19]基于 YOLOV5-MobilenetV3和声呐图像的鱼类识别轻量化模型. 罗毅智,陆华忠,周星星,袁余,齐海军,李斌,刘志昌. 2023

[20]果园凿型铲式深松机优化设计与试验. 李亚丽,曹中华,湛小梅,杨清慧,崔晋波,李英. 2021

作者其他论文 更多>>