基于卷积神经网络的家蚕病害识别研究

文献类型: 中文期刊

第一作者: 石洪康

作者: 石洪康;肖文福;黄亮;胡丛武;胡光荣;张剑飞

作者机构:

关键词: 家蚕;病害识别;卷积神经网络;深度学习

期刊名称: 中国农机化学报

ISSN: 2095-5553

年卷期: 2022 年 01 期

页码: 150-157

收录情况: 北大核心

摘要: 病害是我国养蚕业健康发展面临的主要威胁之一,为研究机械化养蚕模式下的家蚕病害防治方法,采用卷积神经网络进行家蚕病害图像的识别研究。首先在实际环境下,采用饲养和添食病原的方法,集中获取家蚕品种芳·秀×白·春在大蚕期的部分生长阶段下患脓病、微粒子病、白僵病、细菌病、农药中毒以及健康状态的样本,并开展图像采集工作,构建出家蚕病害图像数据集。其次采用特征融合和缩减结构的方法,对残差神经网络进行部分改进,以避免直接使用该算法会导致不必要的计算耗损。最后进行家蚕病害识别试验。结果表明:卷积神经网络能够高效准确识别家蚕病害图像,使用改进的算法在测试集上的准确率达到94.31%,与标准的残差神经网络准确率相当,但训练的参数量仅为原来的1/3,且识别效率大幅提升,更有利于网络的训练与部署。

分类号: TP391.41`S884`TP183

  • 相关文献

[1]面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型. 邱文杰,叶进,胡亮青,杨娟,李其利,莫贱友,易万茂. 2021

[2]一种马铃薯病害神经网络识别方法. 刘飞,董伟,高海涛. 2022

[3]一种基于深度学习的玉米病害识别方法. 郑铖,董伟,高海涛. 2023

[4]基于机器视觉的农作物病害识别研究进展. 麻剑钧,刘晓慈,金龙新,熊伟,易森林,封春芳,刘阳,夏先亮. 2023

[5]设施温室影像采集与环境监测机器人系统设计及应用. 郭威,吴华瑞,朱华吉. 2020

[6]深度学习方法在农业领域的研究及应用. 马聪,张建华,陈学东,朱丹. 2020

[7]基于深度卷积神经网络的红树林物种无人机监测研究. 黄亦其,刘琪,赵建晔,黄文善,孙中宇,乔曦. 2020

[8]基于卷积神经网络的农机图像自动识别研究. 雷雪梅,张光强,姚旗,刘伟渭,邱帅. 2022

[9]卷积神经网络在农业病虫害识别中的应用. 张耀丽,许宁,宋裕民,孟庆山,侯旭,李虎. 2023

[10]基于ResNet深度残差网络的白喉乌头检测. 梁俊欢,董峦,阿斯娅·曼力克,孙宗玖,魏鹏,马海燕,艾尼玩·艾买尔,阿仁,郑逢令. 2023

[11]一种基于深度学习的水稻种子分类方法. 王晓飞,刘维,巫浩翔,陈浩,张丽婷,潘朝阳,何秀英. 2024

[12]基于深度学习模型的种植结构复杂区农作物精细分类研究. 田甜,王迪,王珍,李会宾. 2022

[13]一种边缘辅助的卫星影像云修复卷积神经网络. 张雨姝,戴佩玉. 2024

[14]基于Faster R-CNN网络的茶叶嫩芽检测. 朱红春,李旭,孟炀,杨海滨,徐泽,李振海. 2022

[15]基于卷积神经网络的家蚕幼虫品种智能识别研究. 石洪康,田涯涯,杨创,陈宇,粟思源,张智勇,张剑飞,蒋猛. 2020

[16]基于3-2D融和模型的毛虾捕捞渔船行为识别. 张佳泽,张胜茂,王书献,杨昱皞,戴阳,熊瑛. 2022

[17]基于卷积神经网络的水稻虫害识别. 梁万杰,曹宏鑫. 2017

[18]基于分层卷积神经网络的牧草种子识别模型. 王欣宇,马玉宝,潘新,闫伟红. 2021

[19]基于深度学习的杂草识别方法研究进展. 付豪,赵学观,翟长远,郑康,郑申玉,王秀. 2023

[20]常态养殖下妊娠母猪体质量智能测定模型. 肖德琴,刘俊彬,刘又夫,黄一桂,谭祖杰,熊本海. 2022

作者其他论文 更多>>